Примеры решения рядов фурье. Ряд Фурье

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Лекция №60

6.21. Ряды Фурье для чётных и нечётных функций.

Теорема: Для любой чётной функции её ряд Фурье состоит только из косинусов.

Для любой нечётной функции:
.

Доказательство : Из определения четной и нечетной функции следует, что если ψ(x) – четная функция, то

.

Действительно,

так как по определению четной функции ψ(- x) = ψ(x).

Аналогично можно доказать, что если ψ(x) – нечетная функция, то

Если в ряд Фурье разлагается нечетная функция ƒ(x), то произведение ƒ(x) ·coskxесть функция также нечетная, а ƒ(x) ·sinkx– четная; следовательно,

(21)

т. е. ряд Фурье нечетной функции содержит «только синусы».

Если в ряд Фурье разлагается четная функция, то произведение ƒ(x)·sinkxесть функция нечетная, а ƒ(x) ·coskx– четная, то:

(22)

т. е. ряд Фурье четной функции содержит «только косинусы».

Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной, а также получать разложение в ряд Фурье функции, заданной на части промежутка .

Во многих задачах функция
задается в интервале
. Требуется представить данную функцию в виде бесконечной суммы синусов и косинусов углов, кратных числам натурального ряда, т.е. необходимо произвести разложение функции в ряд Фурье. Обычно в таких случаях поступают следующим образом.

Чтобы разложить заданную функцию по косинусам, функцию
доопределяют в интервале
четным образом, т.е. так, что в интервале

. Тогда для «продолженной» четной функции справедливы все рассуждения предыдущего параграфа, и, следовательно, коэффициенты ряда Фурье определяются по формулам

,

В этих формулах, как видим, фигурируют значения функции
, лишь заданные в интервале
. Чтобы разложить функцию
, заданную в интервале
, по синусам, необходимо доопределить эту функцию в интервале
нечетным образом, т.е. так, что в интервале

.

Тогда вычисление коэффициентов ряда Фурье нужно вести по формулам

.

Теорема 1. Функцию заданную на промежутке можно бесконечным числом способов разложить в тригонометрический ряд Фурье, в частности по cos или по sin.

Замечание. Функция
, заданная в интервале
может быть доопределена в интервале
любым образом, а не только так, как было сделано выше. Но при произвольном доопределении функции разложение в ряд Фурье будет более сложным, чем то, которое получается при разложении по синусам или косинусам.

Пример. Разложить в ряд Фурье по косинусам функцию
, заданную в интервале
(рис.2а).

Решение. Доопределим функцию
в интервале
четным образом (график симметричен относительно оси
)

,

Так как
, то

при

,

при


6.22. Ряд Фурье для функции, заданной на произвольном промежутке

До сих пор мы рассматривали функцию, заданную в интервале
, считая ее вне этого интервала периодической, с периодом
.

Рассмотрим теперь функцию
, период которой равен 2l , т.е.
на интервале
, и покажем, что в этом случае функция
может быть разложена в ряд Фурье.

Положим
, или
. Тогда при измененииот –l доl новая переменнаяизменяется от
дои, следовательно, функциюможно рассматривать как функцию, заданную в интервале от
дои периодическую вне этого промежутка, с периодом
.

Итак,
.

Разложив
в ряд Фурье, получим

,

.

Переходя к старым переменным, т.е. полагая

, получим
,
и
.

То есть ряд Фурье для функции
, заданной в интервале
, будет иметь вид:

,

,


.

Если функция
четная, то формулы для определения коэффициентов ряда Фурье упрощаются:

,

,


.

В случае, если функция
нечетная:

,

,


.

Если функция
задана в интервале
, то ее можно продолжить в интервале
либо четным, либо нечетным образом. В случае четного продолжения функции в интервале

,

.

В случае нечетного доопределения функции в интервале
коэффициенты ряда Фурье находятся по формулам

,


.

Пример . Разложить в ряд Фурье функцию

по синусам кратных дуг.

Решение . График заданной функции представлен на рис.3. Продолжим функцию нечетным образом (рис.4), т.е. будем вести разложение по синусам.

Все коэффициенты

,

Введем замену
. Тогда при
получим
, при
имеем
.

Таким образом

.

6.23. .Понятие о разложении в ряд Фурье непериодических функций

Функцию, заданную в основной области (-ℓ, ℓ), можно периодически продолжить за основную область с помощью функционального соотношения ƒ(x+2 ℓ) = ƒ(x).

Для непериодической функции ƒ(x) (-∞ . Обозначим λ = β 2. Уравнение (28) принимает вид X (x) β 2 X(x) =. Его характеристическое уравнение k 2 β 2 = имеет корни k = ±β. Следовательно, общее решение уравнения (28) имеет вид X(x) = C e βx + De βx. Мы должны подобрать постоянные C и D так, чтобы соблюдались граничные условия (3), т. е. X() = C + D =, X(l) = C e βl + De βl =. Поскольку β, то эта система уравнений имеет единственное решение C = D =. Следовательно, X(x) и 63

64 u(x, t). Тем самым, в случае 1 мы получили тривиальное решение, которое далее рассматривать не будем. Случай 2: λ =. Тогда уравнение (28) принимает вид X (x) = и его решение, очевидно, задается формулой: X(x) = C x+d. Подставляя это решение в граничные условия (3), получим X() = D = и X(l) = Cl =, значит, C = D =. Следовательно, X(x) и u(x, t), и мы опять получили тривиальное решение. Случай 3: λ