Математическое ожидание дискретной случайной величины. Дисперсия и стандартное отклонение в MS EXCEL

Однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:

«Снайперское» математическое ожидание равно , однако и у «интересной личности»: – оно тоже нулевое!

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия .

Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:

Там мы нашли неутешительное математическое ожидание этой игры, и сейчас нам предстоит вычислить её дисперсию, которая обозначается через .

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием :

–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5

Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят , и при сложении дадут ноль, поэтому никакой оценки рассеяния его стрельбы мы не получим.

Чтобы обойти эту неприятность можно рассмотреть модули разностей, но по техническим причинам прижился подход, когда их возводят в квадрат. Решение удобнее оформить таблицей:

И здесь напрашивается вычислить средневзвешенное значение квадратов отклонений. А это ЧТО такое? Это их математическое ожидание , которое и является мерилом рассеяния:

определение дисперсии. Из определения сразу понятно, что дисперсия не может быть отрицательной – возьмите на заметку для практики!

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы) :
– образно говоря, это «сила тяги»,
и суммируем результаты:

Не кажется ли вам, что на фоне выигрышей результат получился великоватым? Всё верно – мы возводили в квадрат, и чтобы вернуться в размерность нашей игры, нужно извлечь квадратный корень. Данная величина называется средним квадратическим отклонением и обозначается греческой буквой «сигма»:

Иногда это значение называют стандартным отклонением .

В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:

– то на этом интервале будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем:

Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:

Во-первых, очевидно то, что при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим в 10 раз, то математическое ожидание увеличится в 10 раз, а дисперсия – в 100 раз (коль скоро, это квадратичная величина) . Но, заметьте, что сами-то правила игры не изменились! Изменились лишь ставки, грубо говоря, раньше мы ставили 10 рублей, теперь 100.

Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне , и посмотрим, что здесь к чему:

Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, где за 1 раз он не проигрывает/выигрывает слишком много. Например, система «красное/чёрное» в рулетке (см. Пример 4 статьи Случайные величины ) .

Игра с высокой дисперсией. Её часто называют дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы «Мартингейл» , в котором на кону оказываются суммы, на порядки превосходящие «тихую» игру предыдущего пункта.

Показательна ситуация в покере: здесь есть так называемые тайтовые игроки, которые склонны осторожничать и «трястись» над своими игровыми средствами (банкроллом) . Неудивительно, что их банкролл не подвергается значительным колебаниям (низкая дисперсия). Наоборот, если у игрока высокая дисперсия, то это агрессор. Он часто рискует, делает крупные ставки и может, как сорвать огромный банк, так и програться в пух и прах.

То же самое происходит на Форексе, и так далее – примеров масса.

Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание .

Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:

Формула для нахождения дисперсии

Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой:

и найденное матожидание .

Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание – квадрата случайной величины . По определению математического ожидания :

В данном случае:

Таким образом, по формуле:

Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).

Осваиваем технику решения и оформления:

Пример 6

Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.

Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями:)

Решение : Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения , затем и, наконец, суммы в правом столбце:

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: .

Дисперсию вычислим по формуле:

И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю до 2 знаков после запятой.

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:

вот здесь уже трудно ошибиться:)

Ответ :

Желающие могут ещё более упростить свою жизнь и воспользоваться моим калькулятором (демо) , который не только моментально решит данную задачу, но и построит тематические графики (скоро дойдём) . Программу можно скачать в библиотеке – если вы загрузили хотя бы один учебный материал, либо получить другим способом . Спасибо за поддержку проекта!

Пара заданий для самостоятельного решения:

Пример 7

Вычислить дисперсию случайной величины предыдущего примера по определению.

И аналогичный пример:

Пример 8

Дискретная случайная величина задана своим законом распределения:

Да, значения случайной величины бывают достаточно большими (пример из реальной работы) , и здесь по возможности используйте Эксель. Как, кстати, и в Примере 7 – это быстрее, надёжнее и приятнее.

Решения и ответы внизу страницы.

В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:

Пример 9

Дискретная случайная величина может принимать только два значения: и , причём . Известна вероятность , математическое ожидание и дисперсия .

Решение : начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:

и поскольку , то .

Осталось найти …, легко сказать:) Но да ладно, понеслось. По определению математического ожидания:
– подставляем известные величины:

– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:

или:

О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:

Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:

и делим на 2:

Вот так-то лучше. Из 1-го уравнения выражаем:
(это более простой путь) – подставляем во 2-е уравнение:


Возводим в квадрат и проводим упрощения:

Умножаем на :

В результате получено квадратное уравнение , находим его дискриминант:
– отлично!

и у нас получается два решения:

1) если , то ;

2) если , то .

Условию удовлетворяет первая пара значений. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:

и выполним проверку, а именно, найдём матожидание:

Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычисления дисперсии можно использовать слегка преобразованную формулу

так как М(Х) , 2 и
– постоянные величины. Таким образом,

4.2.2. Свойства дисперсии

Свойство 1. Дисперсия постоянной величины равна нулю. Действительно, по определению

Свойство 2. Постоянный множитель можно выносить за знак дисперсии с возведением его в квадрат.

Доказательство

Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:

Центрированная величина обладает двумя удобными для преобразования свойствами:

Свойство 3. Если случайные величины Х иY независимы, то

Доказательство . Обозначим
. Тогдаи.

Во втором слагаемом в силу независимости случайных величин и свойств центрированных случайных величин

Пример 4.5. Еслиa иb – постоянные, тоD(a Х+ b )= D (a Х)+ D (b )=
.

4.2.3. Среднее квадратическое отклонение

Дисперсия, как характеристика разброса случайной величины, имеет один недостаток. Если, например, Х – ошибка измерения имеет размерность ММ , то дисперсия имеет размерность
. Поэтому часто предпочитают пользоваться другой характеристикой разброса –средним квадратическим отклонением , которое равно корню квадратному из дисперсии

Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.

Пример 4.6. Дисперсия числа появления события в схеме независимых испытаний

Производится n независимых испытаний и вероятность появления события в каждом испытании равнар . Выразим, как и прежде, число появления событияХ через число появления события в отдельных опытах:

Так как опыты независимы, то и связанные с опытами случайные величины независимы. А в силу независимостиимеем

Но каждая из случайных величин имеет закон распределения (пример 3.2)

и
(пример 4.4). Поэтому, по определению дисперсии:

где q =1- p .

В итоге имеем
,

Среднее квадратическое отклонение числа появлений события в n независимых опытах равно
.

4.3. Моменты случайных величин

Помимо уже рассмотренных случайные величины имеют множество других числовых характеристик.

Начальным моментом k Х (
) называется математическое ожиданиеk -й степени этой случайной величины.

Центральным моментом k -го порядка случайной величиныХ называется математическое ожиданиеk -ой степени соответствующей центрированной величины.

Легко видеть, что центральный момент первого порядка всегда равен нулю, центральный момент второго порядка равен дисперсии, так как .

Центральный момент третьего порядка дает представление об асимметрии распределения случайной величины. Моменты порядка выше второго употребляются сравнительно редко, поэтому мы ограничимся только самими понятиями о них.

4.4. Примеры нахождения законов распределения

Рассмотрим примеры нахождения законов распределения случайных величин и их числовых характеристик.

Пример 4.7.

Составить закон распределения числа попаданий в цель при трех выстрелах по мишени, если вероятность попадания при каждом выстреле равна 0,4. Найти интегральную функцию F (х) для полученного распределения дискретной случайной величиныХ и начертить ее график. Найти математическое ожиданиеM (X ) , дисперсиюD (X ) и среднее квадратическое отклонение
(Х ) случайной величиныX .

Решение

1) Дискретная случайная величина Х – число попаданий в цель при трех выстрелах – может принимать четыре значения:0, 1, 2, 3 . Вероятность того, что она примет каждое из них, найдем по формуле Бернулли при:n =3,p =0,4,q =1- p =0,6 иm =0, 1, 2, 3:

Получим вероятности возможных значений Х :;

Составим искомый закон распределения случайной величины Х :

Контроль: 0,216+0,432+0,288+0,064=1.

Построим многоугольник распределения полученной случайной величины Х . Для этого в прямоугольной системе координат отметим точки (0; 0,216), (1; 0,432), (2; 0,288), (3; 0,064). Соединим эти точки отрезками прямых, полученная ломаная и есть искомый многоугольник распределения (рис. 4.1).

2) Если х0, то F (х) =0. Действительно, значений, меньших нуля, величина Х не принимает. Следовательно, при всех х 0 , пользуясь определениемF (х) , получим F (х) =P (X < x ) =0 (как вероятность невозможного события).

Если 0, тоF (X ) =0,216. Действительно, в этом случаеF (х) =P (X < x ) = =P (- < X0)+ P (0< X < x ) =0,216+0=0,216.

Если взять, например, х =0,2, тоF (0,2)=P (X <0,2) . Но вероятность событияХ <0,2 равна 0,216, так как случайная величинаХ лишь в одном случае принимает значение меньшее 0,2, а именно0 с вероятностью 0,216.

Если 1, то

Действительно, Х может принять значение 0 с вероятностью 0,216 и значение 1 с вероятностью 0,432; следовательно, одно из этих значений, безразлично какое,Х может принять (по теореме сложения вероятностей несовместных событий) с вероятностью 0,648.

Если 2, то рассуждая аналогично, получимF (х) =0,216+0,432 + + 0,288=0,936. Действительно, пусть, например,х =3. ТогдаF (3)=P (X <3) выражает вероятность событияX <3 – стрелок сделает меньше трех попаданий, т.е. ноль, один или два. Применяя теорему сложения вероятностей, получим указанное значение функцииF (х) .

Если x >3, тоF (х) =0,216+0,432+0,288+0,064=1. Действительно, событиеX
является достоверным и вероятность его равна единице, аX >3 – невозможным. Учитывая, что

F (х) =P (X < x ) =P (X3) + P (3< X < x ) , получим указанный результат.

Итак, получена искомая интегральная функция распределения случайной величины Х:

F (x ) =

график которой изображен на рис. 4.2.

3) Математическое ожидание дискретной случайной величины равно сумме произведений всех возможных значений Х на их вероятности:

М(Х) =0=1,2.

То есть, в среднем происходит одно попадание в цель при трех выстрелах.

Дисперсию можно вычислить, исходя из определения дисперсии D (X )= M (X - M (X )) или воспользоваться формулойD (X )= M (X
, которая ведет к цели быстрее.

Напишем закон распределения случайной величины Х:

Найдем математическое ожидание для Х :

М(Х) = 04
= 2,16.

Вычислим искомую дисперсию:

D (X ) = M (X) – (M (X )) = 2,16 – (1,2)= 0,72.

Среднее квадратическое отклонение найдем по формуле

(X ) =
= 0,848.

Интервал (M - ; M + ) = (1,2-0,85; 1,2+0,85) = (0,35; 2,05) – интервал наиболее вероятных значений случайной величиныХ , в него попадают значения 1 и 2.

Пример 4.8.

Дана дифференциальная функция распределения (функция плотности) непрерывной случайной величины Х :

f (x ) =

1) Определить постоянный параметр a .

2) Найти интегральную функцию F (x ) .

3) Построить графики функций f (x ) иF (x ) .

4) Найти двумя способами вероятности Р(0,5< X1,5) иP (1,5< X <3,5) .

5). Найти математическое ожидание М(Х) , дисперсиюD (Х) и среднее квадратическое отклонение
случайной величиныХ .

Решение

1) Дифференциальная функция по свойству f (x ) должна удовлетворять условию
.

Вычислим этот несобственный интеграл для данной функции f (x ) :

Подставляя этот результат в левую часть равенства, получим, что а =1. В условии дляf (x ) заменим параметра на 1:

2) Для нахождения F (x ) воспользуемся формулой

.

Если х
, то
, следовательно,

Если 1
то

Если x>2, то

Итак, искомая интегральная функция F (x ) имеет вид:

3) Построим графики функций f (x ) иF (x ) (рис. 4.3 и 4.4).

4) Вероятность попадания случайной величины в заданный интервал (а, b ) вычисляется по формуле
, если известнафункция f (x ), и по формуле P (a < X < b ) = F (b ) – F (a ), если известна функция F (x ).

Найдем
по двум формулам и сравним результаты. По условиюа=0,5; b =1,5; функцияf (X ) задана в пункте 1). Следовательно, искомая вероятность по формуле равна:

Та же вероятность может быть вычислена по формуле b) через приращение полученной в п.2). интегральной функцииF (x ) на этом интервале:

Так какF (0,5)=0.

Аналогично находим

так как F (3,5)=1.

5) Для нахождения математического ожидания М(Х) воспользуемся формулой
Функцияf (x ) задана в решении пункта 1), она равна нулю вне интервала (1,2]:

Дисперсия непрерывной случайной величиныD (Х) определяется равенством

, или равносильным равенством


.

ДлянахожденияD (X ) воспользуемся последней формулой и учтем, что все возможные значенияf (x ) принадлежат интервалу (1,2]:

Среднее квадратическое отклонение
=
=0,276.

Интервал наиболее вероятных значений случайной величины Х равен

(М-
,М+
) = (1,58-0,28; 1,58+0,28) = (1,3; 1,86).

Вычислим в MS EXCEL дисперсию и стандартное отклонение выборки. Также вычислим дисперсию случайной величины, если известно ее распределение.

Сначала рассмотрим дисперсию , затем стандартное отклонение .

Дисперсия выборки

Дисперсия выборки (выборочная дисперсия, sample variance ) характеризует разброс значений в массиве относительно .

Все 3 формулы математически эквивалентны.

Из первой формулы видно, что дисперсия выборки это сумма квадратов отклонений каждого значения в массиве от среднего , деленная на размер выборки минус 1.

дисперсии выборки используется функция ДИСП() , англ. название VAR, т.е. VARiance. С версии MS EXCEL 2010 рекомендуется использовать ее аналог ДИСП.В() , англ. название VARS, т.е. Sample VARiance. Кроме того, начиная с версии MS EXCEL 2010 присутствует функция ДИСП.Г(), англ. название VARP, т.е. Population VARiance, которая вычисляет дисперсию для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у ДИСП.В() , у ДИСП.Г() в знаменателе просто n. До MS EXCEL 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР() .

Дисперсию выборки
=КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)
=(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1) – обычная формула
=СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1 ) –

Дисперсия выборки равна 0, только в том случае, если все значения равны между собой и, соответственно, равны среднему значению . Обычно, чем больше величина дисперсии , тем больше разброс значений в массиве.

Дисперсия выборки является точечной оценкой дисперсии распределения случайной величины, из которой была сделана выборка . О построении доверительных интервалов при оценке дисперсии можно прочитать в статье .

Дисперсия случайной величины

Чтобы вычислить дисперсию случайной величины, необходимо знать ее .

Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна квадрата отклонения от среднего E(X): Var(Х)=E[(X-E(X)) 2 ]

дисперсия вычисляется по формуле:

где x i – значение, которое может принимать случайная величина, а μ – среднее значение (), р(x) – вероятность, что случайная величина примет значение х.

Если случайная величина имеет , то дисперсия вычисляется по формуле:

Размерность дисперсии соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность дисперсии будет кг 2 . Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из дисперсии стандартное отклонение .

Некоторые свойства дисперсии :

Var(Х+a)=Var(Х), где Х - случайная величина, а - константа.

Var(aХ)=a 2 Var(X)

Var(Х)=E[(X-E(X)) 2 ]=E=E(X 2)-E(2*X*E(X))+(E(X)) 2 =E(X 2)-2*E(X)*E(X)+(E(X)) 2 =E(X 2)-(E(X)) 2

Это свойство дисперсии используется в статье про линейную регрессию .

Var(Х+Y)=Var(Х) + Var(Y) + 2*Cov(Х;Y), где Х и Y - случайные величины, Cov(Х;Y) - ковариация этих случайных величин.

Если случайные величины независимы (independent), то их ковариация равна 0, и, следовательно, Var(Х+Y)=Var(Х)+Var(Y). Это свойство дисперсии используется при выводе .

Покажем, что для независимых величин Var(Х-Y)=Var(Х+Y). Действительно, Var(Х-Y)= Var(Х-Y)= Var(Х+(-Y))= Var(Х)+Var(-Y)= Var(Х)+Var(-Y)= Var(Х)+(-1) 2 Var(Y)= Var(Х)+Var(Y)= Var(Х+Y). Это свойство дисперсии используется для построения .

Стандартное отклонение выборки

Стандартное отклонение выборки - это мера того, насколько широко разбросаны значения в выборке относительно их .

По определению, стандартное отклонение равно квадратному корню из дисперсии :

Стандартное отклонение не учитывает величину значений в выборке , а только степень рассеивания значений вокруг их среднего . Чтобы проиллюстрировать это приведем пример.

Вычислим стандартное отклонение для 2-х выборок: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у выборок существенно отличается. Для таких случаев используется Коэффициент вариации (Coefficient of Variation, CV) - отношение Стандартного отклонения к среднему арифметическому , выраженного в процентах.

В MS EXCEL 2007 и более ранних версиях для вычисления Стандартного отклонения выборки используется функция =СТАНДОТКЛОН() , англ. название STDEV, т.е. STandard DEViation. С версии MS EXCEL 2010 рекомендуется использовать ее аналог =СТАНДОТКЛОН.В() , англ. название STDEV.S, т.е. Sample STandard DEViation.

Кроме того, начиная с версии MS EXCEL 2010 присутствует функция СТАНДОТКЛОН.Г() , англ. название STDEV.P, т.е. Population STandard DEViation, которая вычисляет стандартное отклонение для генеральной совокупности . Все отличие сводится к знаменателю: вместо n-1 как у СТАНДОТКЛОН.В() , у СТАНДОТКЛОН.Г() в знаменателе просто n.

Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера )
=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1))
=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Другие меры разброса

Функция КВАДРОТКЛ() вычисляет сумму квадратов отклонений значений от их среднего . Эта функция вернет тот же результат, что и формула =ДИСП.Г(Выборка )*СЧЁТ(Выборка ) , где Выборка - ссылка на диапазон, содержащий массив значений выборки (). Вычисления в функции КВАДРОТКЛ() производятся по формуле:

Функция СРОТКЛ() является также мерой разброса множества данных. Функция СРОТКЛ() вычисляет среднее абсолютных значений отклонений значений от среднего . Эта функция вернет тот же результат, что и формула =СУММПРОИЗВ(ABS(Выборка-СРЗНАЧ(Выборка)))/СЧЁТ(Выборка) , где Выборка - ссылка на диапазон, содержащий массив значений выборки.

Вычисления в функции СРОТКЛ () производятся по формуле:

Во многих случаях возникает необходимость ввести ещё одну числовую характеристику для измерения степени рассеивания, разброса значений , принимаемых случайной величиной ξ , вокруг её математического ожидания.

Определение. Дисперсией случайной величины ξ называется число.

D ξ = M(ξ-M ξ) 2 . (1)

Другими словами, дисперсия есть математическое ожидание квадрата отклонения значений случайной величины от её среднего значения.

называется средним квадратичным отклонением

величины ξ .

Если дисперсия характеризует средний размер квадрата отклонения ξ , то число можно рассматривать как некоторую среднюю характеристику самого отклонения, точнее, величины | ξ-Mξ |.

Из определения (1) вытекают следующие два свойства дисперсии.

1. Дисперсия постоянной величины равна нулю. Это вполне соответствует наглядному смыслу дисперсии, как «меры разброса».

Действительно, если

ξ = С, то Mξ = C и, значит Dξ = M(C-C ) 2 = M 0 = 0.

2. При умножении случайной величины ξ на постоянное число С её дисперсия умножается на C 2

D(Cξ ) = C 2 . (3)

Действительно

D(Cξ) = M(C

= M(C .

3. Имеет место, следующая формула для вычисления дисперсии:

. (4)

Доказательство этой формулы следует из свойств математического ожидания.

Мы имеем:

4. Если величины ξ 1 и ξ 2 независимы, то дисперсия их суммы равна сумме их дисперсий:

Доказательство . Для доказательства используем свойства математического ожидания. Пусть 1 = m 1 , 2 = m 2 , тогда.

Формула (5) доказана.

Так как дисперсия случайной величины есть по определению математическое ожидание величины (ξ -m ) 2 , где m = Mξ , то для вычисления дисперсии можно воспользоваться формулами, полученными в §7 гл.II.

Так, если ξ есть ДСВ с законом распределения

x 1 x 2 ...
p 1 p 2 ...

то будем иметь:

. (7)

Если ξ непрерывна случайная величина с плотностью распределения p(x) , тогда получим:

= . (8)

Если использовать формулу (4) для вычисления дисперсии, то можно получить другие формулы, а именно:

, (9)

если величина ξ дискретна, и

= , (10)

если ξ распределена с плотностью p (x ).

Пример 1 . Пусть величина ξ равномерно распределена на отрезке [a,b ]. Воспользовавшись формулой (10) получим:

Можно показать, что дисперсия случайной величины , распределенной по нормальному закону с плотностью

p(x) = , (11)

равна σ 2 .

Тем самым выясняется смысл параметра σ, входящего в выражение плотности (11) для нормального закона; σ ecть среднее квадратичное отклонение величины ξ .

Пример 2 . Найти дисперсию случайной величины ξ , распределенной по биномиальному закону.


Решение . Воспользовавшись представлением ξ в виде

ξ = ξ 1 + ξ 2 + ξ n (см. пример 2 §7 гл. II) и применяя формулу сложения дисперсий для независимых величин, получим

Dξ = Dξ 1 + Dξ 2 + Dξ n .

Дисперсия любой из величин ξ i (i = 1,2, n ) подсчитывается непосредственно:

Dξ i = M(ξ i ) 2 - (Mξ i ) 2 = 0 2 · q + 1 2 p - p 2 = p (1-p ) = pq .

Окончательно получаем

= npq , где q = 1 - p .

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3