Тема2. Радиоактивные отходы

После запрещения испытаний ядерного оружия в трех сферах проблема уничтожения радиоактивных отходов, образующихся в процессе использования атомной энергии в мирных целях, занимает одно из первых мест среди всех проблем радиационной экологии.

По физическому состоянию радиоактивные отходы (РАО) подразделяются на твердые, жидкие и газообразные.

Согласно ОСПОРБ-99 (Основные санитарные правила обеспечения радиационной безопасности) к твердым радиоактивным отходам относятся отработавшие свой ресурс радионуклидные источники, не предназначенные для дальнейшего использования материалы, изделия, оборудование, биологические объекты, грунт, а также отвержденные жидкие радиоактивные отходы, в которых удельная активность радионуклидов больше значений, приведенных в приложении П-4 НРБ-99 (нормы радиационной безопасности). При неизвестном радионуклидном составе к РАО следует относить материалы с удельной активностью больше:

100 кБк/кг – для источников бета-излучения;

10 кБк/кг – для источников альфа-излучения;

1 кБк/кг – для трансурановых радионуклидов (химические радиоактивные элементы, расположенные в периодической системе элементов после урана, т.е. с атомным номером больше 92. Все они получены искусственно, а в природе встречаются лишь Np и Pu в чрезвычайно малых количествах).

К жидким радиоактивным отходам относятся не подлежащие дальнейшему использованию органические и неорганические жидкости, пульпы и шламы, в которых удельная активность радионуклидов более чем в 10 раз превышает значения уровней вмешательства при поступлении с водой, приведенные в приложении П-2 НРБ-99.

К газообразным радиоактивным отходам относятся не подлежащие использованию радиоактивные газы и аэрозоли, образующиеся при производственных процессах с объемной активностью, превышающей допустимые среднегодовые объемные активности (ДОА), приведенные в приложении П-2 НРБ-99.

Жидкие и твердые радиоактивные отходы подразделяются по удельной активности на 3 категории: низкоактивные, среднеактивные и высокоактивные (табл. 26).

Таблица 26 – Классификация жидких и твердых РАО (ОСПОРБ-99)

Удельная активность, кБк/кг

бета-излучающие

альфа-излучающие

трансурановые

Низкоактивные

Среднеактивные

от 10 3 до 10 7

от 10 2 до 10 6

от 10 1 до 10 5

Высокоактивные

Радиоактивные отходы образуются:

− в процессе добычи и переработки радиоактивного минераль
ного сырья;

− при работе атомных электростанций;

− в процессе эксплуатации и утилизации кораблей с ядерными
установками;

− при переработке отработавшего ядерного топлива;

− при производстве ядерного оружия;

− при проведении научных работ с использованием исследова
тельских ядерных реакторов и делящегося материала;

− при использовании радиоизотопов в промышленности, меди
цине, науке;

− при подземных ядерных взрывах.

Система обращения с твердыми и жидкими РАО в местах их образования определяется проектом для каждой организации, планирующей работы с открытыми источниками излучения, и включает их сбор, сортировку, упаковку, временное хранение, кондиционирование (концентрирование, отверждение, прессование, сжигание), транспортирование, длительное хранение и захоронение.

Для сбора радиоактивных отходов в организации должны быть специальные сборники. Места расположения сборников должны обеспечиваться защитными приспособлениями для снижения излучения за их пределами до допустимого уровня.

Для временного хранения РАО, создающих у поверхности дозу гамма-излучения более 2 мГр/ч, должны использоваться специальные защитные колодцы или ниши.

Жидкие радиоактивные отходы собираются в специальные емкости, после чего направляются на захоронение. Запрещается сброс жидких РАО в хозяйственно-бытовую и ливневую канализацию, водоемы, колодцы, скважины, на поля орошения, поля фильтрации и на поверхность Земли.

При ядерных реакциях, происходящих в активной зоне реактора, выделяются радиоактивные газы: ксенон-133 (Т физ. = 5 сут.), криптон-85 (Т физ. = 10 лет), радон-222 (Т физ. = 3,8 сут.) и другие. Эти газы поступают в фильтр-адсорбер, где теряют свою активность и только после этого выбрасываются в атмосферу. В окружающую среду поступает также некоторое количество углерода-14 и трития.

Другой источник родионуклидов, попадающих в окружающую среду от функционирующих АЭС, – дебалансная и техническая вода. ТВЭЛ-ы, находящиеся в активной зоне реактора, часто деформируются и продукты деления попадают в теплоноситель. Дополнительным источником радиации в теплоносителе являются радионуклиды, образующиеся в результате облучения материалов реактора нейтронами. Поэтому периодически вода первого контура обновляется и очищается от радионуклидов.

Чтобы не произошло загрязнение окружающей среды, вода всех технологических контуров АЭС включается в систему оборотного водоснабжения (рис. 8).

Тем не менее часть жидких стоков сбрасывают в водоем-охладитель, имеющийся при каждой АЭС. Этот водоем является слабопроточным бассейном (чаще всего это искусственное водохранилище), поэтому сброс в него жидкостей, содержащих даже малое количество радионуклидов, может привести к опасной их концентрации. Сброс жидких радиоактивных отходов в водоемы-охладители категорически запрещен «Санитарными правилами». В них можно направлять только жидкости, в которых концентрация радиоизотопов не превышает допустимые нормы. Кроме того, количество сливаемых в водоем жидкостей ограничивается нормой допустимого сброса. Эта норма устанавливается таким образом, что бы воздействие радионуклидов на водопользователей не превысило дозу 5´10 -5 Зв/год. Объемная активность основных радионуклидов в сбрасываемой воде АЭС Европейской части России, по оценке Ю.А. Егорова (2000), составляет (Бк):

Рис. 8. Структурная схема оборотного водоснабжения АЭС

В процессе самоочищения воды эти радионуклиды опускаются на дно и постепенно захораниваются в донных отложениях, где их концентрация может достигать 60 Бк/кг. Относительное распределение радионуклидов в экосистемах водоемов-охладителей АЭС, по данным Ю.А. Егорова приведено в таблице 27. По мнению этого автора, такие водоемы могут быть использованы в любых народно-хозяйственных и рекреационных целях.

Таблица 27 – Относительное распределение радионуклидов в водоемах-охладителях, %

Компоненты экосистем

Гидробионты:

моллюски

нитчатые водоросли

высшие растения

Донные отложения

Наносят ли вред окружающей среде атомные электростанции? Опыт эксплуатации отечественных АЭС показал, что при правильном техническом обслуживании и налаженном мониторинге окружающей среды они практически безопасны. Радиоактивное воздействие на биосферу этих предприятий не превышает 2% от местного радиационного фона. Ландшафтно-геохимические исследования в десятикилометровой зоне Белоярской АЭС показывают, что плотность загрязнения плутонием почв лесных и луговых биоценозов не превышает 160 Бк/м 2 и находится в пределах глобального фона (Павлецкая, 1967). Расчеты показывают, что в радиационном отношении гораздо более опасны тепловые электростанции, поскольку сжигаемые на них уголь, торф и газ содержат природные радионуклиды семейств урана и тория. Средние индивидуальные дозы облучения в районе расположения тепловых электростанций мощностью 1 ГВт/год составляют от 6 до 60 мкЗв/год, а от выбросов АЭС – от 0,004 до 0,13 мкЗв/год. Таким образом АЭС при нормальной их эксплуатации являются экологически более чистыми, чем тепловые электростанции.

Опасность АЭС заключается лишь в аварийных выбросах радионуклидов и последующем распространении их во внешней среде атмосферным, водным, биологическим и механическим путями. В этом случае биосфере наносится ущерб, выводящий из строя огромные территории, которые долгие годы не могут использоваться в хозяйственной деятельности.

Так, в 1986 г. на Чернобыльской АЭС в результате теплового взрыва в окружающую среду было выброшено до 10% ядерного материала,
находящегося в активной зоне реактора.

За все время эксплуатации АЭС в мире официально зафиксировано около 150 аварийных случаев выбросов радионуклидов в биосферу. Это внушительная цифра, показывающая, что резерв повышения безопасности атомных реакторов пока весьма велик. Поэтому очень важен мониторинг окружающей среды в районах АЭС, который играет решающую роль в выработке способов локализации радиоактивных загрязнений и их ликвидации. Особая роль здесь принадлежит научным исследованиям в области изучения геохимических барьеров, на которых радиоактивные элементы теряют свою подвижность и начинают концентрироваться.

Радиоактивные отходы, содержащие радионуклиды с периодом полураспада менее 15 суток, собираются отдельно и выдерживаются в местах временного хранения для снижения активности до безопасных уровней, после чего удаляются как обычные промышленные отходы.

Передача РАО из организации на переработку или захоронение должна производиться в специальных контейнерах.

Переработку, долговременное хранение и захоронение РАО производят специализированные организации. В отдельных случаях возможно осуществление в одной организации всех этапов обращения с РАО, если это предусмотрено проектом или на это выдано специальное разрешение органов государственного надзора.

Эффективная доза облучения населения, обусловленная радиоактивными отходами, включая этапы хранения и захоронения, не должна превышать 10 мкЗв/год.

Наибольший объем РАО поставляют атомные электростанции. Жидкие РАО АЭС – это кубовые остатки выпарных аппаратов, пульпы механических и ионообменных фильтров очистки контурной воды. На АЭС они хранятся в бетонных емкостях, облицованных нержавеющей сталью. Затем они подвергаются отверждению и захораниваются по специальной технологии. К твердым отходам АЭС относятся вышедшее из строя оборудование и его детали, а также израсходованные материалы. Как правило, они имеют низкую активность и утилизируются на АЭС. Отходы со средней и высокой активностью отправляют на захоронение в специальные подземные хранилища.

Хранилища радиоактивных отходов размещаются глубоко под землей (не менее 300 м), причем, за ними устанавливается постоянное наблюдение, так как радионуклиды выделяют большое количество тепла. Подземные хранилища РАО должны быть долговременными, рассчитанными на сотни и тысячи лет. Они размещаются в сейсмически спокойных районах, в однородных скальных массивах лишенных трещин. Наиболее подходящими для этого являются гранитные геологические комплексы горных массивов, прилегающих к побережью океана. В них удобнее всего сооружать подземные туннели для РАО (Кедровский, Чесноков, 2000). Надежные хранилища РАО могут размещаться в многолетнемерзлых породах. Одно из них планируется создать на Новой Земле.

Для облегчения захоронения и надежности последнего жидкие высокоактивные РАО превращают в твердые инертные вещества. В настоящее время основными методами переработки жидких РАО являются цементирование и остеклование с последующим заключением в стальные контейнеры, которые хранятся под землей на глубине нескольких сотен метров.

Исследователи Московского объединения «Радон» предложили методику обращения жидких РАО в стойкую алюмосиликатную керамику при температуре 900°С с использованием карбамида (мочевины), солей фтора и природных алюмосиликатов (Лащенова, Лифанов, Соловьев, 1999).

Однако при всей своей прогрессивности перечисленные приемы имеют существенный недостаток – объемы радиоактивных отходов при этом не сокращаются. Поэтому ученые находятся в постоянном поиске других методов захоронения жидких РАО. Один из таких методов – селективная сорбция радионуклидов. В качестве сорбентов исследователи предлагают использовать природные цеолиты, с помощью которых может быть достигнута очистка жидкостей от радиоизотопов цезия, кобальта и марганца до безопасных концентраций. При этом объем радиоактивного продукта сокращается в десятки раз (Савкин, Дмитриев, Лифанов и др., 1999). Ю.В. Островский, Г.М. Зубарев, А.А. Шпак и другие новосибирские ученые (1999) предложили гальванохимическую
обработку жидких радиоактивных отходов.

Перспективный метод захоронения высокоактивных отходов – удаление их в космос. Метод предложен академиком А.П. Капицей в 1959 году. Сейчас ведутся интенсивные исследования в этой области.

Радиоактивные отходы в большом количестве производят атомные электростанции, исследовательские реакторы и военная сфера (ядерные реакторы кораблей и подводных лодок).

Согласно оценке МАГАТЭ к концу 2000 года из ядерных реакторов выгружено 200 тыс. тонн облученного топлива.

Предполагается, что основная часть его будет удаляться без переработки (Канада, Финляндия, Испания, Швеция, США), другая часть будет перерабатываться (Аргентина, Бельгия, Китай, Франция, Италия, Россия, Швейцария, Англия, Германия).

Бельгия, Франция, Япония, Швейцария, Англия хоронят блоки с радиоактивными отходами, заключенными в боросиликатное стекло.

Захоронение на дне морей и океанов . Захоронения радиоактивных отходов в морях и океанах практиковалось многими странами. Первыми это сделали США в 1946 году, затем Великобритания - в 1949 году, Япония - в 1955 году, Нидерланды - в 1965 году. Первый морской могильник жидких радиоактивных отходов появился в СССР не позднее 1964 года.

В морских захоронениях Северной Атлантики, где, по данным МАГАТЭ, с 1946 по 1982 годы 12 стран мира затопили радиоактивные отходы суммарной активностью более МКи (одного мегаКюри). Регионы земного шара по величине суммарной активности ныне распределяются следующим образом:

а) Северная Атлантика - примерно 430 кКи;

б) моря Дальнего Востока - около 529 кКи;

в) Арктика - не превышает 700 кКи.

Со времени первого затопления высокоактивных отходов в Карском море прошло 25-30 лет. За эти годы активность реакторов и отработавшего топлива естественным путем снизилась во много раз. На сегодня в северных морях суммарная активность РАО составляет 115 кКи.

При этом надо полагать, что морскими захоронениями радиоактивных отходов занимались грамотные люди - профессионалы в своей области. РАО затапливались во впадинах бухт, где течениями и подводковыми водами не затрагиваются эти глубинные слои. Потому РАО там «сидят» и никуда не распространяются, а только поглощаются специальными осадками.

Надо также учесть, что радиоактивные отходы с наибольшей активностью законсервированы твердеющими смесями. Но даже если радионуклиды попадут в морскую воду - они сорбируются данными осадками в непосредственной близости от объекта затопления. Это было подтверждено прямыми измерениями радиационной обстановки.

Наиболее часто обсуждаемой возможностью для захоронений РАО является использование захоронений в глубоком бассейне, где средняя глубина составляет не менее 5 км. Глубоководное скалистое дно океана покрыто слоем отложений, и неглубокое погребение под десятками метров отложений может быть получено простым сбрасыванием контейнера за борт. Глубокое погребение под сотнями метров отложений потребует бурения и закладки отходов. Отложения насыщены морской водой, которая через десятки или сотни лет может разъесть (в результате коррозии) канистры с топливными элементами из использованного топлива. Однако предполагается, что сами отложения адсорбируют выщелоченные продукты деления, препятствуя их проникновению в океан. Расчеты последствия крайнего случая разрушения оболочки контейнера сразу после попадания в слой отложений показали, что диспергирование топливного элемента, содержащего продукты деления, под слоем отложений случится не ранее чем через 100-200 лет. К тому времени уровень радиоактивности упадет на несколько порядков.

Окончательное захоронение в соляных отложениях . Соляные отложения являются привлекательными местами для долговременных захоронений радиоактивных отходов. Тот факт, что соль находится в твердой форме в геологическом слое, свидетельствует об отсутствии циркуляции грунтовых вод с момента его образования несколько сот миллионов лет тому назад. Таким образом, топливо, помещенное в таком отложении, не будет подвергаться выщелачиванию грунтовыми
водами. Соляные отложения такого типа встречаются очень часто.

Геологическое захоронение. Геологическое захоронение подразумевает размещение контейнеров, содержащих отработанные топливные элементы, в стабильном пласте, обычно на глубине 1 км. Можно допустить, что такие породы содержат воду, так как глубина их залегания значительно ниже зеркала грунтовых вод. Однако ожидается, что вода не будет играть большой роли при теплопередаче от контейнеров, поэтому хранилище должно быть спроектировано с учетом возможности поддержания температуры поверхности канистр не более чем 100°С или около того. Тем не менее присутствие грунтовых вод означает, что материал, выщелоченный из хранящихся блоков, может проникнуть через пласт с водой. Это является важным вопросом при проектировании таких систем. Циркуляция воды сквозь породу как результат разности плотностей, вызванный температурным градиентом, в течение длительного времени важна для определения миграции продуктов деления. Этот процесс очень медленный, и поэтому не ожидается, что от него будут серьезные неприятности. Однако для систем долговременного захоронения он должен быть обязательно принят во внимание.

Выбор между различными методами захоронений будет определяться доступностью удобных мест, потребуется еще много биологических и океанографических данных. Тем не менее, исследования во многих странах показывают, что использованное топливо можно обрабатывать и производить захоронение без чрезмерного риска для человека и окружающей среды.

В последнее время всерьез обсуждается возможность забрасывать контейнеры с долгоживущими изотопами с помощью ракет на невидимую обратную сторону Луны. Вот только как обеспечить стопроцентную гарантию, что все запуски будут успешными, ни одна из ракет-носителей не взорвется в земной атмосфере и не засыплет ее смертоносным пеплом? Что бы ни говорили ракетчики, риск очень велик. Да и вообще мы не знаем, для чего понадобится обратная сторона Луны нашим потомкам. Было бы крайне легкомысленно превратить ее в убийственную радиационную свалку.

Захоронение плутония. Осенью 1996 года в г. Москве проходил Международный научный семинар по плутонию. Это чрезвычайно токсичное вещество получается в результате работы атомного реактора и раньше использовалось для производства ядерных боеприпасов. Но за годы использования ядерной энергии плутония на Земле скопились уже тысячи тонн, ни одной стране для производства оружия столько не нужно. Вот и встал вопрос, что с ним делать дальше?

Оставить просто так где-нибудь в хранилище - весьма дорогое удовольствие.

Как известно, плутоний в природе не встречается, его получают искусственно из урана-238 при облучении последнего нейтронами в атомном реакторе:

92 U 238 + 0 n 1 -> -1 e 0 + 93 Pu 239 .

У плутония обнаружено 14 изотопов с массовыми числами от 232 до 246; наиболее распространен изотоп 239 Pu.

Плутоний, выделяемый из отработанного топлива АЭС, содержит смесь высокоактивных изотопов. Под действием тепловых нейтронов делятся только Pu-239 и Pu-241, а быстрые нейтроны вызывают деление всех изотопов.

Период полураспада 239 Pu равен 24000 годам, 241 Pu – 75 лет, при этом образуется изотоп 241 Am с сильным гамма-излучением. Ядовитость такова, что тысячная доля грамма вызывает летальный исход.

Академик Ю. Трутнев предложил хранить плутоний в подземных хранилищах, сооружаемых с помощью ядерных взрывов. Радиоактивные отходы вместе с горными породами остекловываются и не распространяются в окружающую среду.

Перспективным считается положение, что отработанное ядерное топливо (ОЯТ) – ценнейшее средство для атомной промышленности, подлежащее переработке и использованию по замкнутому циклу: уран – реактор – плутоний – переработка – реактор (Англия, Россия, Франция).

В 2000 году на российских АЭС скопилось около 74000 м 3 жидких РАО суммарной активностью 0,22´10 5 Ки, около 93500 м 3 твердых РАО активностью 0,77´10 3 Ки и около 9000 т отработавшего ядерного топлива активностью свыше 4´10 9 Ки. На многих АЭС хранилища РАО заполнены на 75% и оставшегося объема хватит лишь на 5-7 лет.

Ни одна АЭС не оснащена оборудованием для кондиционирования образующихся РАО. По мнению специалистов Минатома России реально в ближайшие 30-50 лет РАО будут храниться на территории АЭС, поэтому возникает необходимость создания там специальных долговременных хранилищ, приспособленных для последующего извлечения из них РАО для транспортирования их к месту окончательного захоронения.

Жидкие РАО Военно-морского флота хранятся в береговых и плавучих емкостях в регионах, где базируются корабли с атомными двигателями. Годовое поступление таких РАО около 1300 м 3 . Они перерабатываются двумя техническими транспортными судами (один на Северном, другой на Тихоокеанском флотах).

Кроме того, в связи с интенсификацией применения ионизирующего излучения в хозяйственной деятельности человека, с каждым годом возрастает объем отработанных радиоактивных источников, поступающих с предприятий и учреждений, использующих в своей работе радиоизотопы. Большая часть таких предприятий находится в Москве (около 1000), областных и республиканских центрах.

Эта категория РАО утилизируется через централизованную систему территориальных спецкомбинатов «Радон» Российской Федерации, которые осуществляют прием, транспортировку, переработку и захоронение отработанных источников ионизирующего излучения. В ведении Департамента жилищно-коммунального хозяйства Минстроя РФ находятся 16 спецкомбинатов «Радон»: Ленинградский, Нижегородский, Самарский, Саратовский, Волгоградский, Ростовский, Казанский, Башкирский, Челябинский, Екатеринбургский, Новосибирский, Иркутский, Хабаровский, Приморский, Мурманский, Красноярский. Семнадцатый спецкомбинат, Московский (расположен возле г. Сергиев Посад), подчиняется Правительству г. Москвы.

Каждое предприятие «Радон» имеет специально оборудованные пункты захоронения радиоактивных отходов (ПЗРО).

Для захоронения отработавших источников ионизирующего излучения используются инженерные приповерхностные хранилища колодезного типа. В каждом предприятии «Радон» налажена нормальная
эксплуатация хранилищ, учет захороненных отходов, постоянный радиационный контроль и мониторинг за радиоэкологическим состоянием окружающей среды. На основе результатов контроля радиоэкологической обстановки в районе размещения ПЗРО периодически составляется радиоэкологический паспорт предприятия, который утверждается контрольно-надзорными органами.

Спецкомбинаты «Радон» спроектированы в 70-х годах XX века в соответствии с требованиями устаревших ныне норм радиационной безопасности.

Предыдущая

Закон об использование атомной энергетики гласит о том, что радиоактивные отходы - это вещества, материалы, приборы и прочее оборудование, содержащие радионуклиды повышенного уровня и утратившие свои потребительские свойства, а также непригодные для повторного использования.

При каких обстоятельствах, образуются отходы, содержащие радиоактивные элементы

Радиоактивные отходы содержатся в ядерном топливе, они образуются во время эксплуатации атомных электростанций, это один из основных источников. Также их можно получить в результате:

  • добычи радиоактивной руды;
  • переработки руды;
  • производства элементов тепловыделения;
  • утилизации отработанного ядерного топлива.

Во время разработки вооружёнными силами России ядерного оружия, также были образованы радиоактивные отходы, такие действия, как, производство, консервация и ликвидация использовавших этот материал объектов не реабилитировали предыдущие работы с этим материалом. В результате чего на территории страны находится немало отходов, образовавшихся в процессе производства ядерных материалов.

Военный флот, подводные лодки, а также гражданские корабли, использующие ядерные реакторы, тоже оставляют радиоактивные отходы во время своей эксплуатации и даже после их выхода из строя.

Работа с радиоактивными отходами в России связана с такими отраслями:

  • В народном хозяйстве, используя изотопную продукцию.
  • В лечебных или фармацевтических учреждениях и лабораториях.
  • Химическая, металлургическая и прочие промышленные отрасли, работающие в сфере обработки.
  • Проведение научных опытов и исследований, используя ядерное топливо или подобные элементы.
  • Даже службы безопасности, в частности, таможенный контроль.
  • Добыча нефти или газа, также требует использовать ядерные вещества, оставляющие после себя, радиоактивные отходы.

Важно знать. Отработанное ядерное топливо, не подпадёт, под категорию радиоактивные отходы, согласно российскому законодательству.

Разделение на виды

Постановление от Правительства РФ, внесло коррективы, по которым радиоактивные отходы могут быть:

  • твёрдого;
  • жидкого;
  • газ подобного;

видов. Классификация радиоактивных отходов, относит к твёрдым, жидким и газ подобным все элементы и вещества, содержащие радионуклиды. Исключение, возможно, лишь в том случае, если образование не связано с атомной энергетикой, и содержание радионуклидов обусловлено добычей или переработкой природных минералов и органического сырья с повышенным уровнем радионуклидов или вблизи его природного источника. Концентрация, которого в пределах допустимых норм, установленных постановлением российского Правительства, не превышает 1.

РАО, принадлежащие к виду «твёрдых», содержат техногенные радионуклиды, из которых исключают такие источники, как закрытые предприятия, работающие с подобными веществами. Их делят на четыре категории:

  • высокоактивные;
  • средне неактивные;
  • низко активные;
  • очень низко активные.

РАО, прибывающие, в «жидком» состояние делят всего на три категории:

  • высокоактивные;
  • средне активные;
  • низко активные.

Закрытые, отработавшие предприятия и заводы, работавшие с радионуклидами, относятся к другим категориям РАО.

Классификация РАО

Существует Федеральный закон, в целях которого, классификация радиоактивных отходов разделяет их на такие виды:

  • Удаляемые – это вещества, для которых риск, связанный с их воздействием на окружающую среду не возрастает. И в случае их извлечения с места хранения для последующего захоронения, не превышает риск их пребывания на территории их нахождения. Данный вид требует довольно больших финансовых затрат, для выполнения всех манипуляций с ним и подготовки специального оборудования и обучения персонала утилизирующих организаций.
  • Особые – РАО, этот вид подвергает очень большой опасности окружающую среду, в случае их извлечения, транспортировки и дальнейших действий, для очищения территории или захоронении в другом месте. Манипуляции с таким видом также очень затратные с финансовой стороны. В случаях с подобным видом более безопасно и выгодно с экономической стороны проводить процесс захоронения в месте их первичного расположения.

Классификация радиоактивных отходов проходит в зависимости от таких признаков:

  • Период полураспада радионуклидов – короткоживущие или долгоживущие.
  • Удельная активность – высокоактивная, средне активная и низко активная РАО.
  • Агрегатное состояние – может быть жидким, твёрдым и газо подобным.
  • Содержание ядерных элементов, присутствует или отсутствует в отработанном материале.
  • Отработавшие, закрытые предприятия по добычи или переработке урановых пород, которые излучают ионизирующие лучи.
  • РАО, не связанные с использованием или работой над атомной энергетикой. Источниками, которых являются перерабатывающие предприятия по добычи органических и минеральных сырьевых руд, с повышенным уровнем содержания радионуклидов природного происхождения.

Классификация РАО разработана Правительством Российской Федерации, для разделения их на виды. А также дальнейшего удаления или захоронения на месте их нахождения.

Система классификации

В данное время, система классификации разработана не досконально и требует постоянных доработок, это определяется отсутствием согласованности национальных систем.

Основа классификации содержит учёт вариантов, последующего захоронения РАО. Основным признаком чего, служит длительность периода распада нуклида, потому, что технология захоронения напрямую зависит от этого показателя. Они захороняются специальными укрепляющими растворами как минимум на тот период, который они могут быть опасны для окружающей среды. Согласно этим данным, система классификации делит все отработанные и опасные вещества на следующие категории.

Освобождённые от контроля

Низко активные и средне активные РАО

Они содержат в себе достаточный уровень радионуклидов, чтобы нести угрозу персоналу, работающему с ними и населению, проживающему в ближайшей округе. Порой они имеют настолько высокий уровень активности, что требуют охлаждения и применения мер по защите от них. Это категория содержит в себе две группы: долгоживущие и коротко живущие виды. Способы их захоронения очень разнообразны и индивидуальны.

Этот тип имеет такое количество радионуклидов, что требует постоянного охлаждения в процессе работы с ним. По окончании, каких-либо действий, он требует надёжной изоляции от биосферы, иначе процесс заражения захватит всю округу, территории на которой он находится.

Типичные характеристики

Класс отходов, освобождённый от контроля (CW), имеет уровень активности, равный 0,01 мЗв или ниже с учётом годовой дозы для населения. Не имеет ограничений, по радиологическому захоронению.

Средне и низко активные (LILW) характеризуются уровнем активности выше величины для CW, но при этом тепловыделение у этого класса ниже 2Вт/м3.

Класс коротко живущий (LILW-SL) – имеет такие типичные характеристики. Долго живучесть радионуклидов имеет ограниченную концентрацию (менее 400 Бк/г на все упаковки). Местами захоронения таких классов являются глубинные или приповерхностные хранилища.

Долгоживущие отходы (LILW-LL) – концентрация у которых выше, чем у короткоживущих. Захоронятся такие классы, должны лишь в глубинных хранилищах. Это одно из главных требований, по отношению к ним.

Класс высокоактивных (HLW) – характеризуются очень высокой концентрацией долгоживущих радионуклидов, тепловая отдача у них более 2Вт/м3. Местами их захоронения также должны быть глубинные хранилища.

Правила обращения с РАО

Радиоактивные отходы требуют классификации не только ради их разделения по уровню опасности и возможности выбирать методы утилизации, но ещё и для определения указаний, по методам обращения с ними, в зависимости от их класса. Они должны отвечать следующим показателям:

  • Принципы обеспечения защиты здоровья человека, или хотя бы приемлемого уровня защиты, в зависимости от радиационного излучения элементами РАО.
  • Охраной окружающей среды – приемлемым уровнем защищенности экологии от воздействия РАО.
  • Взаимозависимость между всеми стадиями образования РАО, а также обращения с их элементами.
  • Защита будущего поколения, методом прогнозирования уровня облучения, и нормированием количества захороненного материала на каждом могильнике, основываясь на информации нормативных документов.
  • Не возлагать слишком больших надежд на будущее поколение, связанных с необходимостью утилизировать радиоактивные отходы.
  • Контролировать образование и накопление РАО, ограничивать их скопление и минимизировать достигнутый уровень.
  • Предотвращать аварии, или ослаблять возможные последствия, в случае возникновения таких ситуаций.

Радиоактивные отходы – самый опасный вид мусора на земле, требующей очень внимательного и осторожного обращения. Приносящий самый большой урон экологии, населению и всем живим существам, на территории его основания.

Узнайте все про радиоактивные отходы

Радиоактивные отходы

Радиоактивные отходы (РАО ) - отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности.

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные отходы (РАО) - это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. По российскому законодательству, ввоз радиоактивных отходов в страну запрещен.

Часто путают и считают синонимами радиоактивные отходы и отработавшее ядерное топливо . Следует различать эти понятия. Радиоактивные отходы, это материалы, использование которых не предусматривается. Отработавшее ядерное топливо представляет собой тепловыделяющие элементы, содержащие остатки ядерного топлива и множество продуктов деления, в основном 137 Cs и 90 Sr , широко применяемые в промышленности, сельском хозяйстве, медицине и научной деятельности. Поэтому оно является ценным ресурсом, в результате переработки которого получают свежее ядерное топливо и изотопные источники.

Источники появления отходов

Радиоактивные отходы образуются в различных формах с весьма разными физическими и химическими характеристиками, такими, как концентрации и периоды полураспада составляющих их радионуклидов. Эти отходы могут образовываться:

  • в газообразной форме, как, например, вентиляционные выбросы установок, где обрабатываются радиоактивные материалы;
  • в жидкой форме, начиная от растворов сцинтилляционных счётчиков из исследовательских установок до жидких высокоактивных отходов, образующихся при переработке отработавшего топлива;
  • в твёрдой форме (загрязнённые расходные материалы, стеклянная посуда из больниц, медицинских исследовательских установок и радиофармацевтических лабораторий, остеклованные отходы от переработки топлива или отработавшего топлива от АЭС , когда оно считается отходами).

Примеры источников появления радиоактивных отходов в человеческой деятельности:

Работа с такими веществами регламентируются санитарными правилами, выпущенными Санэпиднадзором .

  • Уголь . Уголь содержит небольшое число радионуклидов, таких как уран или торий, однако содержание этих элементов в угле меньше их средней концентрации в земной коре.

Их концентрация возрастает в зольной пыли, поскольку они практически не горят.

Однако радиоактивность золы также очень мала, она примерно равна радиоактивности чёрного глинистого сланца и меньше, чем у фосфатных пород, но представляет известную опасность, так как некоторое количество зольной пыли остаётся в атмосфере и вдыхается человеком. При этом совокупный объём выбросов достаточно велик и составляет эквивалент 1000 тонн урана в России и 40000 тонн во всём мире.

Классификация

Условно радиоактивные отходы делятся на:

  • низкоактивные (делятся на четыре класса: A, B, C и GTCC (самый опасный);
  • среднеактивные (законодательство США не выделяет этот тип РАО в отдельный класс, термин в основном используется в странах Европы);
  • высокоактивные.

Законодательство США выделяет также трансурановые РАО. К этому классу относятся отходы, загрязненные альфа-излучающими трансурановыми радионуклидами, с периодами полураспада более 20 лет и концентрацией большей 100 нКи /г, вне зависимости от их формы или происхождения, исключая высокоактивные РАО . В связи с долгим периодом распада трансурановых отходов их захоронение проходит тщательнее, чем захоронение малоактивных и среднеактивных отходов. Также особое внимание этому классу отходов выделяется потому, что все трансурановые элементы являются искусственными и поведение в окружающей среде и в организме человека некоторых из них уникально.

Ниже приведена классификация жидких и твёрдых радиоактивных отходов в соответствии с «Основными санитарными правилами обеспечения радиационной безопасности" (ОСПОРБ 99/2010).

Одним из критериев такой классификации является тепловыделение. У низкоактивных РАО тепловыделение чрезвычайно мало. У среднеактивных оно существенно, но активный отвод тепла не требуется. У высокоактивных РАО тепловыделение настолько велико, что они требуют активного охлаждения.

Обращение с радиоактивными отходами

Изначально считалось, что достаточной мерой является рассеяние радиоактивных изотопов в окружающей среде , по аналогии с отходами производства в других отраслях промышленности . На предприятии «Маяк» в первые годы работы все радиоактивные отходы сбрасывались в близлежащие водоёмы. Вследствие чего загрязнёнными оказались теченский каскад водоёмов и сама река Теча .

Позже выяснилось, что за счёт естественных природных и биологических процессов радиоактивные изотопы концентрируются в тех или иных подсистемах биосферы (в основном в животных, в их органах и тканях), что повышает риски облучения населения (за счёт перемещения больших концентраций радиоактивных элементов и возможного их попадания с пищей в организм человека). Поэтому отношение к радиоактивным отходам было изменено.

1) Защита здоровья человека . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень защиты здоровья человека.

2) Охрана окружающей среды . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень охраны окружающей среды.

3) Защита за пределами национальных границ . Обращение с радиоактивными отходами осуществляется таким образом, чтобы учитывались возможные последствия для здоровья человека и окружающей среды за пределами национальных границ.

4) Защита будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни.

5) Бремя для будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения.

6) Национальная правовая структура . Обращение с радиоактивными отходами осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей чёткое распределение обязанностей и обеспечение независимых регулирующих функций.

7) Контроль за образованием радиоактивных отходов . Образование радиоактивных отходов удерживается на минимальном практически осуществимом уровне.

8) Взаимозависимости образования радиоактивных отходов и обращения с ними . Надлежащим образом учитываются взаимозависимости между всеми стадиями образования радиоактивных отходов и обращения с ними.

9) Безопасность установок . Безопасность установок для обращения с радиоактивными отходами надлежащим образом обеспечивается на протяжении всего срока их службы.

Основные стадии обращения с радиоактивными отходами

  • При хранении радиоактивных отходов их следует содержать таким образом, чтобы:
    • обеспечивались их изоляция, охрана и мониторинг окружающей среды;
    • по возможности облегчались действия на последующих этапах (если они предусмотрены).

В некоторых случаях хранение может осуществляться главным образом по техническим соображениям, например, хранение радиоактивных отходов, содержащих в основном короткоживущие радионуклиды, в целях их распада и последующего сброса в санкционированных пределах, или хранение радиоактивных отходов высокого уровня активности до их захоронения в геологических формациях в целях уменьшения тепловыделения.

  • Предварительная обработка отходов является первоначальной стадией обращения с отходами. Она включает сбор, регулирование химического состава и дезактивацию и к ней может относиться период промежуточного хранения. Эта стадия очень важна, так как во многих случаях в ходе предварительной обработки представляется наилучшая возможность для разделения потоков отходов.
  • Обработка радиоактивных отходов включает операции, цель которых состоит в повышении безопасности или экономичности посредством изменения характеристик радиоактивных отходов. Основные концепции обработки: уменьшение объёма, удаление радионуклидов и изменение состава. Примеры:
    • сжигание горючих отходов или уплотнение сухих твёрдых отходов;
    • выпаривание , фильтрация или ионный обмен потоков жидких отходов;
    • осаждение или флокуляция химических веществ.

Капсула для радиоактивных отходов

  • Кондиционирование радиоактивных отходов состоит из таких операций, в процессе которых радиоактивным отходам придают форму, приемлемую для перемещения, перевозки, хранения и захоронения. Эти операции могут включать иммобилизацию радиоактивных отходов, помещение отходов в контейнеры и обеспечение дополнительной упаковки. Общепринятые методы иммобилизации включают отверждение жидких радиоактивных отходов низкого и среднего уровней активности путём их включения в цемент (цементирование) или битум (битумирование), а также остекловывание жидких радиоактивных отходов. Иммобилизованные отходы в свою очередь в зависимости от характера и их концентрации могут упаковываться в различные контейнеры, начиная от обычных 200-литровых стальных бочек до имеющих сложную конструкцию контейнеров с толстыми стенками. В многих случаях обработка и кондиционирование проводятся в тесной связи друг с другом.
  • Захоронение главным образом состоит в том, что радиоактивные отходы помещаются в установку для захоронения при соответствующем обеспечении безопасности без намерения их изъятия и без обеспечения долгосрочного наблюдения за хранилищем и технического обслуживания. Безопасность в основном достигается посредством концентрации и удержания, что предусматривает изоляцию надлежащим образом концентрированных радиоактивных отходов в установке для захоронения.

Технологии

Обращение со среднеактивными РАО

Обычно в ядерной индустрии среднеактивные РАО подвергаются ионному обмену или другим методам, целью которых является концентрация радиоактивности в малом объёме. После обработки уже гораздо менее радиоактивное тело полностью обезвреживают. Существует возможность использовать гидроксид железа в качестве флокулянта для удаления радиоактивных металлов из водных растворов. После абсорбции радиоизотопов гидроксидом железа полученный осадок помещают в металлический барабан, где он перемешивается с цементом, образуя твердую смесь. Для большей стабильности и долговечности бетон изготовляют из зольной пыли или печного шлака и портландцемента (в отличие от обычного бетона, который состоит из портландцемента, гравия и песка).

Обращение с высокоактивными РАО

Удаление малоактивных РАО

Перевозка опок с высокоактивными РАО на поезде, Великобритания

Хранение

Для временного хранения высокоактивных РАО предназначены резервуары для хранения отработанного ядерного топлива и хранилища с сухотарными бочками, позволяющие распасться короткоживущим изотопам перед дальнейшей переработкой.

Витрификация

Долговременное хранение РАО требует консервации отходов в форме, которая не будет вступать в реакции и разрушаться на протяжении долгого времени. Одним из способов достижения подобного состояния является витрификация (или остеклование). В настоящее время в Селлафилде (Великобритания) высокоактивные РАО (очищенные продукты первой стадии пурекс-процесса) смешивают с сахаром и затем кальцинируют. Кальцинирование подразумевает прохождение отходов через нагретую вращающуюся трубу и ставит целью испарение воды и деазотирование продуктов деления, чтобы повысить стабильность получаемой стекловидной массы.

В полученное вещество, находящееся в индукционной печи, постоянно добавляют измельченное стекло. В результате получается новая субстанция, в которой при затвердении отходы связываются со стеклянной матрицей. Это вещество в расплавленном состоянии вливается в цилиндры из легированной стали . Охлаждаясь, жидкость затвердевает, превращаясь в стекло, которое является крайне устойчивым к воздействию воды. По данным международного технологического общества, потребуется около миллиона лет, чтобы 10 % такого стекла растворилось в воде.

После заполнения цилиндр заваривают, затем моют. После обследования на предмет внешнего загрязнения стальные цилиндры отправляют в подземные хранилища. Такое состояние отходов остаётся неизменным в течение многих тысяч лет.

Стекло внутри цилиндра имеет гладкую чёрную поверхность. В Великобритании вся работа проделывается с использованием камер для работы с высокоактивными веществами. Сахар добавляется для предотвращения образования летучего вещества RuO 4 , содержащего радиоактивный рутений. На Западе к отходам добавляют боросиликатное стекло, идентичное по составу пирексу ; в странах бывшего СССР обычно применяют фосфатное стекло. Количество продуктов деления в стекле должно быть ограничено, так как некоторые элементы (палладий , металлы платиновой группы и теллур) стремятся образовать металлические фазы отдельно от стекла. Один из заводов по витрификации находится в Германии , там перерабатываются отходы деятельности небольшой демонстрационной перерабатывающей фабрики, прекратившей своё существование.

В 1997 году в 20 странах, обладающих большей частью мирового ядерного потенциала, запасы отработанного топлива в хранилищах внутри реакторов составляли 148 тыс. тонн, 59 % из которых были утилизированы. Во внешних хранилищах находилось 78 тыс. тонн отходов, из которых утилизировано 44 %. С учетом темпов утилизации (около 12 тыс. тонн ежегодно), до окончательного устранения отходов ещё достаточно далеко.

Геологическое захоронение

Поиски подходящих мест для глубокого окончательного захоронения отходов в настоящее время ведутся в нескольких странах; ожидается, что первые подобные хранилища вступят в эксплуатацию после 2010 года. Международная исследовательская лаборатория в швейцарском Гримзеле занимается вопросами, посвящёнными захоронению РАО. Швеция говорит о своих планах по прямому захоронению использованного топлива с использованием технологии KBS-3, после того, как шведский парламент счёл её достаточно безопасной. В Германии в настоящее время ведутся дискуссии о поисках места для постоянного хранения РАО, активные протесты заявляют жители деревни Горлебен региона Вендланд . Это место вплоть до 1990 года казалось идеальным для захоронения РАО благодаря своей близости к границам бывшей Германской демократической республики . Сейчас РАО находятся в Горлебене на временном хранении, решение о месте их окончательного захоронения пока не принято. Власти США выбрали местом захоронения Юкка-Маунтин, штат Невада , однако данный проект встретил сильное противодействие и стал темой жарких дискуссий. Существует проект создания международного хранилища высокоактивных РАО, в качестве возможных мест захоронения предлагаются Австралия и Россия . Однако власти Австралии выступают против подобного предложения.

Существуют проекты захоронения РАО в океанах, среди которых - захоронение под абиссальной зоной морского дна, захоронение в зоне субдукции , в результате чего отходы будут медленно опускаться к земной мантии , а также захоронение под природным или искусственным островом. Данные проекты имеют очевидные достоинства и позволят решить на международном уровне неприятную проблему захоронения РАО, но, несмотря на это, в настоящее время они заморожены из-за запрещающих положений морского права. Другая причина состоит в том, что в Европе и Северной Америке всерьёз опасаются утечки из подобного хранилища, что приведет к экологической катастрофе. Реальная возможность подобной опасности не доказана; тем не менее, запреты были усилены после сброса РАО с кораблей. Однако, в будущем о создании океанских хранилищ РАО всерьёз способны задуматься страны, которые не смогут найти других решений данной проблемы.

В 1990-х годах было разработано и запатентовано несколько вариантов конвейерного захоронения в недра радиоактивных отходов. Технология предполагалась следующая: пробуривается стартовая скважина большого диаметра глубиной до 1 км, внутрь опускается капсула, загруженная концентратом радиоактивных отходов весом до 10 т, капсула должна саморазогреваться и в форме «огненного шара» проплавлять земную породу. После заглубления первого «огненного шара» в ту же скважину должна опускаться вторая капсула, затем третья и т. д., создавая некий конвейер.

Повторное использование РАО

Ещё одним применением изотопам, содержащимся в РАО, является их повторное использование. Уже сейчас цезий-137 , стронций-90 , технеций-99 и некоторые другие изотопы используются для облучения пищевых продуктов и обеспечивают работу радиоизотопных термоэлектрических генераторов.

Удаление РАО в космос

Отправка РАО в космос является заманчивой идеей, поскольку РАО навсегда удаляются из окружающей среды. Однако у подобных проектов есть значительные недостатки, один из самых важных - возможность аварии ракеты-носителя. Кроме того, значительное число запусков и большая их стоимость делает это предложение непрактичным. Дело также усложняется тем, что до сих пор не достигнуты международные соглашения по поводу данной проблемы.

Ядерный топливный цикл

Начало цикла

Отходы начального периода ядерного топливного цикла - обычно полученная в результате извлечения урана пустая порода, испускающая альфа-частицы . Она обычно содержит радий и продукты его распада.

Главный побочный продукт обогащения - обеднённый уран, состоящий главным образом из урана-238, с содержанием урана-235 менее 0,3 %. Он находится на хранении в форме UF 6 (отвальный гексафторид урана) и может быть также переведен в форму U 3 O 8 . В небольших количествах обедненный уран находит применение в областях, где ценится его крайне высокая плотность, например при изготовлении килей яхт и противотанковых снарядов. Между тем, в России и за рубежом накопилось несколько миллионов тонн отвального гексафторида урана , планов по дальнейшему использованию которого в обозримой перспективе нет. Отвальный гексафторид урана может использоваться (вместе с повторно используемым плутонием) для создания смешанного оксидного ядерного топлива (которое может иметь спрос при условии строительства в стране в значительных количествах реакторов на быстрых нейтронах) и для разбавления высокообогащенного урана, входящего ранее в состав ядерного оружия . Это разбавление, называемое также обеднением, означает, что любая страна или группировка, получившая в своё распоряжение ядерное топливо, должна будет повторить очень дорогой и сложный процесс обогащения, прежде чем сможет создать оружие.

Окончание цикла

Вещества, в которых подошёл к концу ядерный топливный цикл (в основном это отработавшие топливные стержни), содержат продукты деления, испускающие бета- и гамма-лучи. Они также могут содержать актиноиды , испускающие альфа-частицы, к которым относятся уран-234 (234 U), нептуний-237 (237 Np), плутоний-238 (238 Pu) и америций-241 (241 Am), а иногда даже источники нейтронов, такие как калифорний-252 (252 Cf). Эти изотопы образуются в ядерных реакторах.

Важно различать обработку урана с целью получения топлива и переработку использованного урана. Использованное горючее содержит высокорадиоактивные продукты деления. Многие из них являются поглотителями нейтронов, получив, таким образом, название «нейтронных ядов». В конечном итоге их количество возрастает до такой степени, что, улавливая нейтроны, они останавливают цепную реакцию даже при полном удалении стержней-поглотителей нейтронов .

Достигшее этого состояния топливо необходимо заменить свежим, несмотря на по-прежнему достаточное количество урана-235 и плутония. В настоящее время в США использованное топливо отправляется на хранение. В других странах (в частности, в России, Великобритании, Франции и Японии), это топливо перерабатывается с целью удаления продуктов деления, затем после дообогащения возможно его повторное использование. В России такое топливо называется регенерированным. Процесс переработки включает работу с высокорадиоактивными веществами, а удалённые из топлива продукты деления - это концентрированная форма высокоактивных РАО, так же, как используемые в переработке химикаты.

Для замыкания ядерного топливного цикла предполагается использовать реакторы на быстрых нейтронах , который позволяет перерабатывать топливо, являющееся отходами работы реакторов на тепловых нейтронах .

К вопросу о распространении ядерного оружия

При работе с ураном и плутонием часто рассматривается возможность их использования при создании ядерного оружия. Активные ядерные реакторы и запасы ядерного оружия тщательно охраняются. Однако, высокоактивные РАО из ядерных реакторов могут содержать плутоний. Он идентичен плутонию, используемому в реакторах, и состоит из 239 Pu (идеально подходящего для создания ядерного оружия) и 240 Pu (нежелательный компонент, крайне радиоактивен); эти два изотопа очень тяжело разделить. Более того, высокоактивные РАО из реакторов полны высокорадиоактивных продуктов деления; впрочем, их большая часть - короткоживущие изотопы . Это означает, что возможно захоронение отходов, и через много лет продукты деления распадутся, уменьшив радиоактивность отходов и облегчив работу с плутонием. Более того, нежелательный изотоп 240 Pu распадается быстрее, чем 239 Pu, таким образом, качество сырья для создания оружия со временем растет (несмотря на уменьшение количества). Это вызывает споры о том, что с течением времени хранилища отходов могут превратиться в своеобразные «рудники плутония», из которых относительно легко можно будет добыть сырье для оружия. Против этих предположений говорит тот факт, что период полураспада 240 Pu составляет 6560 лет, а период полураспада 239 Pu - 24110 лет, таким образом, сравнительное обогащение одного изотопа относительно другого произойдет только через 9000 лет (это означает, что в течение этого времени доля 240 Pu в веществе, состоящем из нескольких изотопов, самостоятельно уменьшится вдвое - типичное превращение реакторного плутония в оружейный плутоний). Следовательно, «рудники оружейного плутония» если и станут проблемой, то только в очень отдаленном будущем.

Одно из решений этой проблемы - повторно использовать переработанный плутоний в качестве топлива, например, в быстрых ядерных реакторах. Однако само существование фабрик по регенерации ядерного топлива, необходимой для отделения плутония от других элементов, создает возможность для распространения ядерного оружия. В пирометаллургических быстрых реакторах получаемые отходы имеют актиноидную структуру, что не позволяет использовать их для создания оружия.

Переработка ядерного оружия

Отходы от переработки ядерного оружия (в отличие от его изготовления, которое требует первичного сырья из реакторного топлива), не содержат источников бета- и гамма-лучей, за исключением трития и америция. В них содержится гораздо большее число актиноидов, испускающих альфа-лучи, таких как плутоний-239, подвергающийся ядерной реакции в бомбах, а также некоторые вещества с большой удельной радиоактивностью, такие как плутоний-238 или полоний .

В прошлом в качестве ядерного заряда в бомбах предлагались бериллий и высокоактивные альфа-излучатели, такие как полоний. Сейчас альтернативой полонию является плутоний-238. По причинам государственной безопасности, подробные конструкции современных бомб не освещаются в литературе, доступной широкому кругу читателей.

Некоторые модели также содержат (РИТЭГ), в которых в качестве долговечного источника электрической мощности для работы электроники бомбы используется плутоний-238.

Возможно, что расщепляющееся вещество старой бомбы, подлежащее замене, будет содержать продукты распада изотопов плутония. К ним относятся альфа-излучающий нептуний-236, образовавшийся из включений плутония-240, а также некоторое количество урана-235, полученного из плутония-239. Количество этих отходов радиоактивного распада ядра бомбы будет очень мало, и в любом случае они гораздо менее опасны (даже в переводе на радиоактивность как таковую), чем сам плутоний-239.

В результате бета-распада плутония-241 образуется америций-241, увеличение количества америция - большая проблема, чем распад плутония-239 и плутония-240, так как америций является гамма-излучателем (возрастает его внешнее воздействие на рабочих) и альфа-излучателем, способным вызвать выделение тепла. Плутоний может быть отделен от америция различными путями, среди которых - пирометрическая обработка и извлечение при помощи водного/органического растворителя. Видоизмененная технология извлечения плутония из облучённого урана (PUREX) - также один из возможных методов разделения.

В массовой культуре

Реально же воздействие радиоактивных отходов описывается воздействием ионизирующего излучения на вещество и зависит от их состава (какие радиоактивные элементы входят в состав). Радиоактивные отходы не приобретают никаких новых свойств, не становятся опаснее от того, что они - отходы. Их бо́льшая опасность обсуловлена только тем, что часто их состав очень разнообразен (как качественно, так и количественно) и иногда неизвестен, что усложняет оценку степени их опасности, в частности, доз, получаемых в результате аварии.

См. также

Примечания

Ссылки

  • Безопасность при обращении с радиоактивными отходами. Общие положения. НП-058-04
  • Key Radionuclides and Generation Processes (недоступная ссылка)
  • Belgian Nuclear Research Centre - Activities (недоступная ссылка)
  • Belgian Nuclear Research Centre - Scientific Reports (недоступная ссылка)
  • International Atomic Energy Agency - Nuclear Fuel Cycle and Waste Technology Program (недоступная ссылка)
  • (недоступная ссылка)
  • Nuclear Regulatory Commission - Spent Fuel Heat Generation Calculation (недоступная ссылка)

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Сбор, модификация и захоронение радиоактивных отходов должны производиться отдельно от остальных видов утильсырья. Сбрасывание их в водоемы запрещено, иначе последствия будут очень печальными. Радиоактивными называют отходы, не представляющие для дальнейшего производства практической ценности. Они включают в себя совокупность радиоактивных химических элементов. Согласно законодательству России, последующее использование подобных соединений запрещено.

Перед началом процесса утилизации, РАО необходимо рассортировать по степени радиоактивности, форме и периоду распада. В дальнейшем, для уменьшения объемов опасных изотопов и нейтрализации радионуклидов, их подвергают обработке с помощью сжигания, выпаривания, прессовки и фильтрации.

Последующая обработка заключается в осуществлении фиксации жидких отходов с помощью цемента или битума с целью их отвердения, либо остекловывании высокоактивных РАО.

Зафиксированные изотопы помещают в специальные сложно сконструированные контейнеры с толстыми стенками для дальнейшей их транспортировки к месту хранения. С целью повышения безопасности, их снабжают дополнительной упаковкой.

Общая характеристика

Радиоактивные отходы могут образоваться из различных источников, иметь разнообразную форму и свойства.

К важным характеристикам радиоактивного мусора относят:

  • Концентрация. Параметр, показывающий величину удельной активности. То есть это та активность, которая приходится на одну единицу массы. Наиболее популярная единица измерения Ки/Т. Соответственно, чем больше эта характеристика, тем опаснее последствия может принести за собой подобный мусор.
  • Период полураспада. Продолжительность распада половины атомов в радиоактивном элементе. Стоит заметить, что чем быстрее этот период, тем больше энергии выделяет мусор, принося больше вреда, но в этом случае вещество быстрее теряет свойства.

Вредные вещества могут иметь разную форму, различают три основных агрегатных состояния:

  • Газообразная. Как правило, сюда включаются выбросы из вентиляционных установок организаций, занимающиеся непосредственной обработкой радиоактивных материалов.
  • В жидких формах. Это могут быть отходы жидких типов, которые образовались во время переработки уже использованного топлива. Подобный мусор отличается высокой активностью, тем самым способен нанести сильный вред окружающей среде.
  • Твердая форма. Это стекло и стеклянная посуда из больниц и исследовательских лабораторий.

Хранение РАО

Собственником пункта хранения РАО в России может быть как юридическое лицо, так и федеральный орган власти. На временное хранение радиоактивные отходы должны быть помещены в специальный контейнер, обеспечивающий консервацию отработанного топлива. Причём материал, из которого изготовлен контейнер, не должен вступать в какую — либо химическую реакцию с веществом.

Помещения для хранения должны быть оборудованы сухотарными бочками, которые позволяют короткоживущим РАО распасться перед проведением дальнейшей их переработки. Таким помещением является хранилище радиоактивных отходов. Цель его функционирование — осуществление временного размещения РАО для дальнейшей транспортировки к местам их захоронения.

Контейнер для твердых радиоактивных отходов

Захоронение радиоактивных отходов не может обойтись без специальной емкости, которая называется контейнер для РАО. Контейнер для радиоактивного мусора – сосуд, используемый как хранилище радиоактивных отходов. В России закон устанавливает огромное количество требований к подобному изобретению.

Основные из них:

  1. Невозвратный контейнер не предназначен для хранения жидких РАО. Его структура позволяет вмещать в себя только твердые или отвержденные вещества.
  2. Корпус, который имеет контейнер, должен быть герметичен и не пропускать даже малую часть хранящихся отходов.
  3. После снятия крышки и проведения дезактивации, загрязнение не должно превышать больше 5 частиц на м 2 . Допускать большего загрязнения нельзя, так как неприятные последствия могут коснуться и внешней среды.
  4. Контейнер должен выдерживать самые суровые температурные режимы от — 50 до + 70 градусов по Цельсию.
  5. При сливе радиоактивного вещества с высокой температурой в емкость, контейнер должен выдерживать температуру до + 130 градусов по Цельсию.
  6. Контейнер должен выдерживать внешние физические воздействия, в частности землетрясения.

Процесс хранения изотопов в России должен обеспечивать:

  • Их изоляцию, соблюдение охранительных мероприятий, а также наблюдение за состоянием окружающей среды. Последствия, при нарушении подобного правила, могут быть плачевными, так как вещества способны практически мгновенно загрязнить близлежащие районы.
  • Возможность облегчения дальнейших процедур на последующих этапах.

Основными направлениями процесса хранения токсических отходов являются:

  • Хранение РАО с коротким сроком жизни. В последующем осуществляют их сброс в строго регламентированных объемах.
  • Хранение высокоактивных РАО до момента их захоронения. Это позволяет уменьшить количество выделяемого ими тепла, и уменьшить последствия вредного воздействия на экологию.

Захоронение РАО

Проблемы захоронения радиоактивных отходов до сих пор существуют в России. Должно обеспечиваться не только экологическая защищенность человека, но и окружающей среды. Данный вид деятельности предполагает наличие лицензии на пользование недрами и право осуществления работ по освоению ядерной энергии. Пункты утилизации радиоактивных отходов могут пребывать как в федеральной собственности, так и принадлежать государственной корпорации «Росатом». На сегодняшний день захоронение РАО в РФ производят в специально отведенных местах, которые называются могильники для радиоактивных отходов.

Существует три вида захоронения, их классификация зависит от длительности хранения радиоактивных веществ:

  1. Длительное захоронение РАО — десяток лет. Вредные элементы хоронят в траншеях, небольших инженерных сооружениях, сделанных на земле или под ней.
  2. На сотни лет. В этом случае захоронение радиоактивных отходов осуществляют в геологических структурах материка, сюда входят поземные выработки и естественные полости. В России и других странах активно практикуют создание могильников на дне океана.
  3. Трансмутация. Теоретически возможный способ избавление от радиоактивных веществ, который подразумевает облучение долгоживущих радионуклидов и превращение их в короткоживущие.

Выбирается вид захоронения на основе трех параметров:

  • Удельная активность вещества
  • Уровень герметизации упаковки
  • Предполагаемый срок хранения

Хранилища радиоактивных отходов в России должны соответствовать требованиям:

  1. Хранилище радиоактивных отходов должно располагаться в удалении от города. Расстояние между ними должно быть не меньше 20 километров. Последствия при нарушении этого правила – отравление и возможная гибель населения.
  2. Рядом с территорией могильника не должно быть зон застройки, иначе есть риск повреждения контейнеров.
  3. При полигоне должен находиться участок, на котором будет выполняться захоронение отходов.
  4. Уровень грунтовых источников должен быть максимально удален. Если отходы попадут в воду, то последствия будут печальными – смерть животных и человека
  5. Радиоактивные могильники твердых и прочих отходов должны иметь санитарно — защитную зону. Её протяжённость не может быть меньше 1 километра от зон выпаса скота и населенных пунктов.
  6. При полигоне должен находиться завод, занимающийся детоксикацией РАО.

Переработка отходов

Переработка радиоактивных отходов – процедура, которая направлена на непосредственную трансформацию агрегатного состояния или свойств радиоактивного вещества, с целью создания удобства для перевозки и хранения отходов.

Для каждого типа мусора существуют собственные методы проведения подобной процедуры:

  • Для жидких – осаждения, обмен при помощи ионов и дистилляция.
  • Для твердых – сжигание, прессование и кальцинация. Остатки твердых отходов отправляют на места захоронения.
  • Для газообразных – химическое поглощение и фильтрация. Далее вещества будут храниться в баллонах с высоким давлением.

Какого бы агрегата не перерабатывался продукт, в итоге получится иммобилизованные компактные блоки твердых типов. Для иммобилизации и дальнейшего изолирования твердых веществ, применяют следующие методы:

  • Цементирование. Применяется для мусора, имеющего низкую и среднюю активность вещества. Как правило, это отходы твердых типов.
  • Обжигание при высоких температурах.
  • Остекловывание.
  • Упаковка в специальные емкости. Обычно такие контейнеры сделаны из стали или свинца.

Дезактивация

В связи с активным загрязнением окружающей среды, в России и других странах мира пытаются найти актуальный способ дезактивации радиоактивного мусора. Да, захоронение и утилизация твердых радиоактивных отходов дают свои результаты, но к сожалению, эти процедуры не обеспечивают безопасность экологии, а значит не являются совершенными. В настоящий момент в России практикуют несколько способов дезактивации РАО.

При помощи карбоната натрия

Такой способ применяется исключительно для твердых отходов, которые попали в почву: карбонат натрия выщелачивает радионуклиды, которые извлекаются из раствора щелочи частицами иона, включающими в свой состав магнитный материал. Далее хелатные комплексы удаляются при помощи магнита. Такой способ обработки твердых веществ достаточно эффективен, однако имеются недостатки.

Проблема метода:

  • Выщелачиватель (формула Na2Co3) имеет достаточно ограниченную химическую способность. Он попросту не в состоянии извлечь всю гамму радиоактивных соединений из твердого состояния и перевести их в тип жидких материалов.
  • Дороговизна способа в основном из — за хемосорбционного материала, который имеет уникальную структуру.

Растворение в азотной кислоте

Применим способ к радиоактивным пульпам и осадкам, эти вещества растворяют в азотной кислоте с примесью гидразина. После этого раствор упаковывают и проводят остеклование.

Главная проблема это дороговизна процедуры, так как упарка раствора и дальнейшая утилизация радиоактивных отходов стоит достаточно дорого.

Элюирование почвы

Применяется для дезактивации почвы и грунта. Такой способ наиболее щадящий по отношению к окружающей среды. Суть заключается в следующем, зараженную почву или грунт обрабатывают проводя элюирование водой, водными растворами с прибавками аммониевыми солями, растворами аммиака.

Главная проблема это относительно небольшая эффективность при извлечении радионуклидов, которые связаны с почвой на химическом уровне.

Дезактивация жидких отходов

Радиоактивные отходы жидких типов – особый вид мусора, который сложен в хранении и в утилизации. Именно поэтому дезактивация – лучшее средство избавления от подобного вещества.

Существует три способа очистки вредного материала от радионуклидов:

  1. Физический метод. Подразумевает процесс выпаривания или вымораживания веществ. Далее проводится герметизация и помещение вредных элементов в могильники мусора.
  2. Физико — химический. При помощи раствора с селективными экстрагентами проводится экстракция, т.е. вывод радионуклидов.
  3. Химический. Очистка радионуклидов при помощи разных природных реагентов. Главная проблема способа заключается в большом количестве оставшихся шламов, которые отправляются на могильники.

Общая проблема каждого метода:

  • Физические способы – крайне высокие затраты на выпаривание и вымораживание растворов.
  • Физико — химические и химические – огромные объемы радиоактивных шламов, отправленные на могильники. Процедура захоронение довольно дорогая, она требует много денег и времени.

Радиоактивные отходы – проблема не только России, но и других стран. Главная задача человечества на данный момент – утилизация радиоактивных отходов и их захоронение. Какими методами это делать, решает каждое государство самостоятельно.

Швейцария не занимается самостоятельной переработкой и захоронением радиоактивных отходов, но активно занимается разработкой программ по обращению с подобным мусором. Если же не предпринимать никаких действий, то последствия могут быть самыми печальными вплоть до гибели человечества и животных.

Радиоактивные отходы (РАО) – побочные продукты технической деятельности, содержащие биологически опасные радионуклиды. РАО образуются:

  • на всех этапах атомной энергетики (от производства топлива до работы ядерных энергетических установок (ЯЭУ), в том числе атомных электростанций (АЭС);
  • при производстве, использовании и уничтожении ядерного оружия при производстве и применении радиоактивных изотопов.

РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т 1/2), по активности (интенсивности излучения).

Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые, в основном возникающие при работе атомных электростанций, других ЯЭУ и на радиохимических заводах по получению и переработке ядерного топлива. Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Радионуклиды, содержащиеся в РАО, претерпевают спонтанный (самопроизвольный) распад, при котором происходит один (или последовательно несколько) из видов излучений: a -излучение (поток a -частиц – дважды ионизированных атомов гелия), b -излучение (поток электронов), g -излучение (жесткое коротковолновое электромагнитное излучение), нейтронное излучение.

Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени числа радиоактивных ядер, при этом продолжительность жизни радиоактивных ядер характеризуется периодом полураспада Т 1/2 – промежутком времени, за который число радионуклидов уменьшится в среднем наполовину. Периоды полураспада некоторых радиоизотопов, образующихся при распаде основного ядерного топлива – урана-235 – и представляющих наибольшую опасность для биологических объектов, приведены в таблице.

Таблица

Периоды полураспада некоторых радиоизотопов

США, активно проводившие в свое время испытания атомного оружия в Тихом океане, использовали один из островов для захоронения РАО. Складируемые на острове контейнеры с плутонием были закрыты мощными железобетонными панцирями с надписями-предостережениями, видимыми за несколько миль: держаться подальше от этих мест в течение 25 тыс. лет! (Напомним, что возраст человеческой цивилизации – 15 тыс. лет.) Некоторые контейнеры под влиянием непрекращающихся радиоактивных распадов разрушились, уровень радиации в прибрежных водах и донных породах превышает допустимые нормы и опасен для всего живого.

Радиоактивные излучения вызывают ионизацию атомов и молекул вещества, в том числе вещества живых организмов. Механизм биологического действия радиоактивных излучений сложен и до конца не изучен. Ионизация и возбуждение атомов и молекул в живых тканях, происходящие при поглощении ими излучений, лишь начальный этап в сложной цепи последующих биохимических превращений. Установлено, что ионизация приводит к разрыву молекулярных связей, изменению структуры химических соединений и в конечном итоге к разрушению нуклеиновых кислот и белка. Под действием радиации поражаются клетки, прежде всего их ядра, нарушаются способность клеток к нормальному делению и обмен веществ в клетках.

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические железы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия радиоактивных излучений на органы возникают тяжелейшие заболевания: лучевая болезнь, злокачественные опухоли (нередко со смертельным исходом). Облучение оказывает сильное влияние на генетический аппарат, приводя к появлению потомства с уродливыми отклонениями или врожденными заболеваниями.

Рис. 2

Специфической особенностью радиоактивных излучений является то, что они не воспринимаются органами чувств человека и даже при смертельных дозах не вызывают у него болевых ощущений в момент облучения.

Степень биологического воздействия радиации зависит от вида излучения, его интенсивности и продолжительности воздействия на организм.

Единица радиоактивности в системе единиц СИ – беккерель (Бк): 1 Бк соответствует одному акту радиоактивного распада в секунду (внесистемная единица – кюри (Ки): 1 Ки = 3,7 10 10 актов распада за 1 с).

Поглощенная доза (или доза излучения ) – энергия любого вида излучения, поглощенная 1 кг вещества. Единица измерения дозы в системе СИ – грей (Гр): при дозе 1 Гр в 1 кг вещества при поглощении радиации выделяется энергия в 1 Дж (внесистемная единица – рад : 1 Гр = 100 рад, 1 рад = 1/100 Гр).

Радиоактивная чувствительность живых организмов и их органов различна: смертельная доза для бактерий составляет 10 4 Гр, для насекомых – 10 3 Гр, для человека – 10 Гр. Максимальная доза излучения, не причиняющая вреда организму человека при многократном действии, – 0,003 Гр в неделю, при единовременном действии – 0,025 Гр.

Эквивалентная доза излучения – основная дозиметрическая единица в области радиационной безопасности, введена для оценки возможного ущерба здоровью человека от хронического воздействия. Единица эквивалентной дозы в системе СИ – зиверт (Зв): 1 Зв – доза излучения любого вида, производящая такое же действие, как образцовое рентгеновское излучение в 1 Гр, или в 1 Дж/кг, 1 Зв = 1 Гр = 1 Дж/кг (внесистемная единица – бэр (биологический эквивалент рентгена), 1 Зв = 100 бэр, 1 бэр = 1/100 Зв).

Энергия источника ионизирующего излучения (ИИИ) измеряется обычно в электронвольтах (эВ): 1 эВ = 1,6 10 –19 Дж, для человека допустимо получать в год от ИИИ не более 250 эВ (разовая доза – 50 эВ).

Единица измерения рентген (Р) используется для характеристики состояния среды, подвергнувшейся радиоактивному загрязнению: 1 Р соответствует образованию в 1 см 3 воздуха при нормальных условиях 2,082 млн пар ионов обоих знаков, или 1 Р = 2,58 10 –4 Кл/кг (Кл – кулон).

Естественный радиоактивный фон – допустимая мощность эквивалентной дозы от естественных источников радиации (поверхности Земли, атмосферы, воды и т. д.) составляет в России 10–20 мкР/ч (10–20 мкбэр/ч, или 0,1–0,2 мкЗв/ч).

Радиоактивное заражение имеет глобальный характер не только по пространственным масштабам своего влияния, но и по времени действия, угрожая жизни людей в течение многих десятилетий (последствия кыштымской и чернобыльской аварий) и даже столетий. Так, основная «начинка» атомных и водородных бомб – плутоний-239 (Рu-239) – имеет период полураспада 24 тыс. лет. Даже микрограммы этого изотопа, попав в организм человека, вызывают раковые заболевания различных органов; три «апельсина» из плутония-239 потенциально могут уничтожить все человечество без всяких ядерных взрывов.

Ввиду безусловной опасности РАО для всех живых организмов и для биосферы в целом они нуждаются в дезактивации и (или) тщательном захоронении, что до сих пор является нерешенной проблемой. Проблема борьбы с радиоактивным загрязнением окружающей среды выдвигается на первый план среди других экологических проблем ввиду его огромных масштабов и особо опасных последствий. По мнению известного эколога А.В.Яблокова, «экологическая проблема № 1 в России – ее радиоактивное заражение».

Неблагоприятная радиологическая обстановка в отдельных регионах мира и России – результат прежде всего многолетней гонки вооружений в период холодной войны и создания оружия массового поражения.

Для производства оружейного плутония (Рu-239) в 1940-е гг. были построены первые ЯЭУ – реакторы (для атомного оружия требуются десятки тонн Рu-239; одну тонну этой «взрывчатки» производит ядерный реактор на медленных нейтронах мощностью 1000 МВт – такую мощность имеет один блок обычной АЭС типа Чернобыльской). Испытания ядерными державами (США, СССР, а затем Россией, Францией и другими странами) ядерного оружия в атмосфере и под водой, подземные ядерные взрывы в «мирных» целях, на которые сейчас наложен мораторий, привели к сильному загрязнению всех компонентов биосферы.

По программе «Мирный атом» (термин предложен американским президентом Д.Эйзенхауэром) в 1950-е гг. строительство АЭС началось сначала в США и СССР, а затем и в других странах. В настоящее время доля АЭС в производстве электрической энергии в мире составляет 17% (в структуре электроэнергетики России на долю АЭС приходится 12%). В России девять АЭС, из которых восемь расположены в европейской части страны (все станции были построены еще в период существования СССР), в том числе самая крупная – Курская – мощностью 4000 МВт.

Помимо арсенала ядерного оружия (бомб, мин, боеголовок), ЯЭУ, производящих взрывчатое вещество, и АЭС, источниками радиоактивного заражения окружающей среды в России (и на прилегающих к ней территориях) являются:

  • атомный ледокольный флот, самый мощный в мире;
  • подводные и надводные военные корабли с силовыми ЯЭУ (и несущие ядерное оружие);
  • судоремонтные и судостроительные заводы таких кораблей;
  • предприятия, занимающиеся переработкой и утилизацией радиоактивных отходов военно-промышленного комплекса (в том числе списанных подводных лодок) и АЭС;
  • затонувшие атомные корабли;
  • космические аппараты с ЯЭУ на борту;
  • места захоронения РАО.

К этому перечню следует добавить, что до сих пор радиационная обстановка в России определяется последствиями аварий, произошедших в 1957 г. на производственном объединении (ПО) «Маяк» (Челябинск-65) в Кыштыме (Южный Урал) и в 1986 г. на Чернобыльской АЭС (ЧАЭС) 1 .

До сих пор радиоактивному загрязнению в результате аварии на Чернобыльской АЭС подвержены сельскохозяйственные угодья в Республике Мордовия и 13 областях Российской Федерации на площади 3,5 млн га. (О последствиях кыштымской аварии сказано ниже.)

Общая площадь радиационно дестабилизированной территории России превышает 1 млн км 2 с числом проживающих на ней более 10 млн человек. В настоящее время на территории России суммарная активность незахороненных РАО составляет более 4 млрд Ки, что эквивалентно по последствиям восьмидесяти чернобыльским катастрофам.

Наиболее неблагоприятная радиационная экологическая обстановка сложилась на севере европейской территории России, в Уральском районе, на юге Западно- и Восточно-Сибирского районов, в местах базирования Тихоокеанского флота.

Мурманская область по количеству ядерных объектов на душу населения превосходит все другие области и страны. Здесь широко распространены объекты, применяющие различные ядерные технологии. Из гражданских объектов это прежде всего Кольская АЭС (КАЭС), имеющая четыре энергоблока (два из них приближаются к выработке ресурса). Около 60 предприятий и учреждений используют различные радиоизотопные приборы технологического контроля. К мурманскому «Атомфлоту» приписано семь ледоколов и один лихтеровоз, на которых установлено 13 реакторов.

Основное количество ядерных объектов связано с вооруженными силами. Северный флот имеет на своем вооружении 123 атомных судна с 235 ядерными реакторами; береговые батареи включают в общей сложности 3–3,5 тыс. ядерных боеголовок.

Добыча и переработка ядерного сырья проводится на Кольском полуострове двумя специализированными горно-обогатительными комбинатами. Радиоактивные отходы, образующиеся при производстве ядерного топлива, при эксплуатации КАЭС и судов с ЯЭУ, накапливаются непосредственно на территории КАЭС и на специальных предприятиях, в том числе на военных базах. Низкоактивные РАО с гражданских предприятий захораниваются под Мурманском; отходы с КАЭС после выдержки на станции направляются на переработку на Урал; часть РАО военного флота временно хранится на плавучих базах.

Принято решение о создании специальных могильников РАО для нужд региона, в которых будут захораниваться уже накопленные отходы и вновь образующиеся, в том числе те, что будут образовываться при выводе из эксплуатации первой очереди КАЭС и судовых ЯЭУ.

В Мурманской и Архангельской областях ежегодно образуется до 1 тыс. м 3 твердых и 5 тыс. м 3 жидких РАО. Указанный уровень отходов удерживается последние 30 лет.

С конца 1950-х гг. по 1992 г. Советским Союзом в Баренцевом и Карском морях были захоронены твердые и жидкие РАО суммарной активностью 2,5 млн Ки, в том числе 15 реакторов с атомных подводных лодок (АПЛ), три реактора с ледокола «Ленин» (из них 13 аварийных реакторов АПЛ, в том числе шесть с невыгруженным ядерным топливом). Затопление ядерных реакторов и жидких РАО происходило и на Дальнем Востоке: в Японском и Охотском морях и у берегов Камчатки.

Опасную радиологическую обстановку создают аварии на АПЛ. Из них наиболее известная, получившая мировой резонанс, трагедия АПЛ «Комсомолец» (7 апреля 1989 г.), в результате которой погибло 42 члена экипажа, а лодка легла на грунт на глубине 1680 м вблизи острова Медвежий в Баренцевом море в 300 морских милях от побережья Норвегии. В активной зоне реактора лодки содержится примерно 42 тыс. Ки стронция-90 и 55 тыс. Ки цезия-137. Кроме того, на лодке есть ядерные боезапасы с плутонием-239.

Район северной Атлантики, где произошла катастрофа, – один из наиболее биологически продуктивных в Мировом океане, имеет особое экономическое значение и входит в сферу интересов России, Норвегии и ряда других стран. Результаты анализов показали, что пока выход радионуклидов с лодки во внешнюю среду незначителен, но в районе затопления формируется зона загрязнения. Этот процесс может иметь импульсный характер, особенно опасно при этом загрязнение плутонием-239, содержащимся в боезарядах лодки. Перенос радионуклидов по трофической цепи морская вода–планктон–рыба грозит серьезными экологическими и политико-экономическими последствиями.

На Южном Урале в Кыштыме расположено ПО «Маяк» (Челябинск-65), где с конца 1940-х гг. производится регенерация отработанного ядерного топлива. До 1951 г. возникающие в ходе переработки жидкие РАО просто сливались в речку Теча. Через сеть рек: Теча–Исеть–Обь – происходил вынос радиоактивных веществ в Карское море и с морскими течениями в другие моря Арктического бассейна. Хотя впоследствии такой сброс был прекращен, спустя более 40 лет концентрация радиоактивного стронция-90 на отдельных участках реки Теча превышала фоновую в 100–1000 раз. С 1952 г. ядерные отходы стали сбрасывать в озеро Карачай (названное техническим водоемом № 3) площадью в 10 км 2 . За счет тепла, выделяемого отходами, озеро в конце концов пересохло. Началась засыпка озера грунтом и бетоном; для окончательной засыпки, по расчетам, еще потребуется ~800 тыс. м скального грунта при стоимости работ 28 млрд рублей (в ценах 1997 г.). Однако под озером образовалась линза, заполненная радионуклидами, суммарная активность которых составляет 120 млн Ки (почти в 2,5 раза выше, чем активность излучения при взрыве 4-го энергоблока ЧАЭС).

Недавно стало известно, что в 1957 г. на ПО «Маяк» произошла серьезная радиационная авария: в результате взрыва емкости с РАО образовалось облако с радиоактивностью 2 млн Ки, растянувшееся на 105 км в длину и 8 км в ширину. Серьезному радиационному заражению (примерно 1/3 чернобыльского) подверглась площадь в 15 тыс. км 2 , на которой проживало более 200 тыс. человек. На радиационно зараженной территории был создан заповедник, где в течение десятков лет проводились наблюдения за живым миром в условиях повышенной радиации. К сожалению, данные этих наблюдений считались секретными, что не позволило дать необходимые медико-биологические рекомендации при ликвидации аварии на ЧАЭС. Аварии на «Маяке» происходили много раз, последняя по времени – в 1994 г. Тогда же в результате частичного разрушения хранилища РАО вблизи Петропавловска-Камчатского произошло временное повышение радиации по сравнению с фоновой в 1000 раз.

До сих пор на ПО «Маяк» ежегодно образуется до 100 млн Ки жидких РАО, часть которых просто сбрасывают в поверхностные водоемы. Твердые РАО складывают в могильники траншейного типа, не отвечающие требованиям безопасности, в результате чего радиоактивно загрязнено более 3 млн га земель. В зоне влияния ПО «Маяк» уровни радиоактивного загрязнения воздуха, воды и почвы в 50–100 раз выше средних значений по стране; отмечено возрастание количества онкологических заболеваний и детских лейкозов. На предприятии начаты строительство комплексов по остекловыванию высокоактивных и битумированию среднеактивных РАО, а также опытная эксплуатация металлобетонного контейнера для долговременного хранения отработанного ядерного топлива реакторов серии РБМК-1000 (подобного типа реакторы были установлены на ЧАЭС).

Суммарная радиоактивность имеющихся РАО в челябинской зоне, по некоторым оценкам, достигает огромной цифры – 37 млрд ГБк. Этого количества достаточно, чтобы превратить всю территорию бывшего СССР в аналог чернобыльской зоны отселения.

Другой очаг «радиоактивной напряженности» в стране – горно-химический комбинат (ГХК) по производству оружейного плутония и переработке РАО, расположенный в 50 км от Красноярска. На поверхности это город без определенного официального названия (Соцгород, Красноярск-26, Железногорск) со 100-тысячным населением; сам комбинат расположен глубоко под землей. Кстати, подобные объекты имеются (по одному) в США, Великобритании, Франции; ведется строительство такого объекта в Китае. О Красноярском ГХК, естественно, мало что известно, кроме того, что переработка ввозимых из-за границы РАО приносит доход 500 тыс. долларов за 1 т отходов. По свидетельству специалистов, радиационная обстановка на ГХК измеряется не в мкР/ч, а в мР/с! В течение десятков лет комбинат закачивает жидкие РАО в глубинные горизонты (по данным на 1998 г., их закачено ~50 млн м 3 с активностью 800 млн Ки), что грозит негативными последствиями как окрестностям Красноярска, так и Енисею – влияние сброса ГХК на воды Енисея прослеживается на расстоянии свыше 800 км.

Впрочем, захоронение высокоактивных РАО в подземные горизонты применяется и в других странах: в США, например, захоронение РАО производят в глубоких соляных копях, а в Швеции – в скальных породах.

Радиоактивное загрязнение окружающей среды атомными электростанциями возникает не только в результате чрезвычайных обстоятельств, а достаточно регулярно. Например, в мае 1997 г. во время технологического ремонта на Курской АЭС произошла опасная утечка в атмосферу цезия-137.

Предприятия атомной отрасли промышленности имеют дело с производством, применением, хранением, транспортировкой и захоронением радиоактивных веществ. Другими словами, образование РАО сопровождает все этапы топливного цикла атомной энергетики (рис. 2), что предъявляет особые требования к обеспечению радиационной безопасности.

Урановую руду добывают на рудниках подземным или открытым способом. Природный уран представляет собой смесь изотопов: урана-238 (99,3%) и урана-235 (0,7%). Поскольку основным ядерным горючим является уран-235, после первичной переработки руда поступает на обогатительный завод, где содержание урана-235 в руде доводится до 3–5%. Химическая переработка топлива заключается в получении обогащенного гексафторида урана 235 UF 6 для последующего производства твэлов (тепловыделяющих элементов).

Разработка урановых месторождений, как и любая другая отрасль горнодобывающей промышленности, ухудшает окружающую среду: выводятся из хозяйственного пользования значительные территории, изменяются ландшафт и гидрологический режим, происходит загрязнение воздуха, почвы, поверхностных и подземных вод радионуклидами. Количество РАО на стадии первичной переработки природного урана очень велико и составляет 99,8%. В России добыча и первичная переработка урана осуществляется только на одном предприятии – Приаргунском горно-химическом объединении. На всех работавших до последнего времени предприятиях по добыче и переработке урановых руд в отвалах и хвостохранилищах находится 108 м 3 РАО с активностью 1,8 10 5 Ки.

Твэлы, представляющие собой металлические стержни, в которых находится ядерное топливо (3% урана-235), размещаются в активной зоне реактора АЭС. Возможны различные виды цепных реакций деления урана-235 (различие в образующихся осколках и числе испускаемых нейтронов), например, такие:

235 U + 1 n ® 142 Ba + 91 Kr + 31 n ,
235 U + 1 n
® 137 Te + 97 Zr + 21 n ,
235 U + 1 n
® 140 Xe + 94 Sr + 21 n .

Тепло, выделяющееся при делении урана, нагревает воду, протекающую через активную зону и омывающую стержни. Примерно через три года содержание урана-235 в твэлах снижается до 1%, они становятся неэффективными источниками тепла и требуют замены. Каждый год треть твэлов удаляется из активной зоны и заменяется новыми: для типичной АЭС с мощностью 1000 МВт это означает ежегодное удаление 36 т твэлов.

В ходе ядерных реакций твэлы обогащаются радионуклидами – продуктами деления урана-235, а также (через серию b-распадов) плутонием-239:

238 U + 1 n ® 239 U(b ) ® 239 Np(b ) ® 239 Pu.

Отработанные твэлы транспортируются из активной зоны по подводному каналу в хранилища, заполненные водой, где хранятся в стальных пеналах несколько месяцев, пока большинство высокотоксичных радионуклидов (в частности, наиболее опасный йод-131) не распадется. После этого твэлы направляются на заводы по регенерации топлива, например для получения плутониевых сердечников для ядерных реакторов на быстрых нейтронах или оружейного плутония.

Жидкие отходы ядерных реакторов (в частности, вода первого контура, которая должна обновляться) после переработки (выпаривания) помещают в бетонные хранилища, расположенные на территории АЭС.

Определенное количество радионуклидов при работе АЭС выделяется в воздух. Радиоактивный йод-135 (один из главных продуктов распада в работающем реакторе) не накапливается в отработанном ядерном топливе, поскольку его период полураспада составляет всего 6,7 ч, но в результате последующих радиоактивных распадов превращается в радиоактивный газ ксенон-135, активно поглощающий нейтроны и потому препятствующий цепной реакции. Для предотвращения «ксенонового отравления» реактора ксенон удаляют из реактора через высокие трубы.

Об образовании отходов на этапах переработки и хранения отработанного ядерного топлива уже говорилось. К сожалению, все существующие и применяемые в мире методы обезвреживания РАО (цементирование, остекловывание, битумирование и др.), а также сжигание твердых РАО в керамических камерах (как на НПО «Радон» в Московской области) неэффективны и представляют значительную опасность для окружающей среды.

Особенно острой проблема утилизации и захоронения РАО атомных электростанций становится в настоящее время, когда наступает время демонтажа большинства АЭС в мире (по данным МАГАТЭ 2 , это более 65 реакторов АЭС и 260 реакторов, использующихся в научных целях). Отметим, что за время работы АЭС все элементы станции становятся радиоактивно опасными, особенно металлические конструкции зоны реакторов. Демонтаж АЭС по стоимости и срокам сравним с их строительством, при этом до сих пор нет приемлемой научно-технической и экологической технологии проведения демонтажа. Альтернатива демонтажу – герметизация станции и ее охрана в течение 100 и более лет.

Еще до прекращения пожара на ЧАЭС началась прокладка туннеля под реактор, создание под ним выемки, которую затем заполнили многометровым слоем бетона. Бетоном был залит и блок, и прилегающие к нему территории – это «чудо строительства» (и пример героизма без кавычек) ХХ в. получило название «саркофаг». Взорвавшийся 4-й энергоблок ЧАЭС до сих пор представляет собой крупнейшее в мире и опаснейшее плохо обустроенное хранилище РАО!

При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе – это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.

Проблема РАО – составная часть «Повестки дня на XXI век»», принятой на Всемирной встрече на высшем уровне по проблемам Земли в Рио-де-Жанейро (1992) и «Программы действий по дальнейшему осуществлению “Повестки дня на ХХI век”», принятой Специальной сессией Генеральной Ассамблеи Организации Объединенных Наций (июнь 1997 г.). В последнем документе, в частности, намечена система мер по совершенствованию методов обращения с радиоактивными отходами, по расширению международного сотрудничества в этой области (обмен информацией и опытом, помощь и передача соответствующих технологий и др.), по ужесточению ответственности государств за обеспечение безопасного хранения и удаления РАО.

В «Программе действий...» констатируется ухудшение общих тенденций в области устойчивого развития мира, но выражается надежда, что к следующему международному экологическому форуму, намеченному на 2002 год, будет отмечен осязаемый прогресс в обеспечении устойчивого развития, направленного на создание благоприятных условий жизни будущих поколений.

Е.Э.Боровский

________________________________
1 Все приведенные ниже данные взяты из материалов открытых публикаций в государственных докладах «О состоянии окружающей природной среды Российской Федерации» Государственного комитета РФ по охране окружающей среды и в российской экологической газете «Зеленый мир» (1995–1999 гг.).
2 Международное агентство по атомной энергии.