Угол равный данному с помощью циркуля. Как построить угол, равный данному

Построение угла, равного данному. Дано: полупрямая, угол. Построение. В. А. С. 7. Для доказательства достаточно заметить, что треугольники АВС и ОВ1С1 равны как треугольники с соответственно равными сторонами. Углы А и О являются соответствующими углами этих треугольников. Надо: отложить от данной полупрямой в данную полуплоскость угол, равный данному углу. С1. В1. О. 1. Проведем произвольную окружность с центром в вершине А данного угла. 2. Пусть В и С – точки пересечения окружности со сторонами угла. 3. Радиусом АВ проведем окружность с центром в точке О – начальной точке данной полупрямой. 4. Точку пересечения этой окружности с данной полупрямой обозначим В1. 5. Опишем окружность с центром В1 и радиусом ВС. 6. Точка С1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

Слайд 6 из презентации «Геометрия «Задачи на построение»» . Размер архива с презентацией 234 КБ.

Геометрия 7 класс

краткое содержание других презентаций

«Равнобедренный треугольник» - Теорема. Треугольник – самая простая замкнутая прямолинейная фигура. Решение задач. Найдите угол KBA. Равенство треугольников. Отгадайте ребус. ABC -равнобедренный. Перечислите равные элементы треугольников. Классификация треугольников по сторонам. В равнобедренном треугольнике АМК АМ = АК. Классификация треугольников по величине углов. Боковые стороны. Треугольник, все стороны которого равны. Равнобедренный треугольник.

«Измерение отрезков и углов» - Сравнение отрезков. http://www.physicsdepartment.ru/blog/images/0166.jpg. Ф3 = ф4. MN > CD. 1м =. Середина отрезка. 1км. На какое наибольшее число частей могут разбить плоскость 4 различные прямые? Другие единицы измерения. Сравнение фигур с помощью наложения. Сравнение углов. Совместились стороны ВМ и ЕС. На сколько частей могут разбить плоскость 3 различные прямые? http://www.robertagor.it/calibro.jpg.

«Прямоугольный треугольник, его свойства» - Один из углов прямоугольного треугольника. Решение. Какой треугольник называется прямоугольным. Прямоугольный треугольник. Свойства прямоугольного треугольника. Разминка. Развитие логического мышления. Биссектриса. Катет прямоугольного треугольника. Составим уравнение. Внимательно рассмотрим чертеж. Свойство прямоугольного треугольника. Жители трех домов. Треугольник.

«Определение угла» - Понятия углов. Проведите лучи. Подготовительный этап урока. Угол. Объяснение нового материала. Угол разделяет плоскость. Понятия внутренней и внешней областей угла. Заинтересовать предметом. Луч на рисунке делит угол. Определение развёрнутого угла. Развитие логического мышления. Тупой угол. Острый угол. Вступительные слова. Закрасьте внутреннюю область угла. Углы. Луч BM делит угол ABC на два угла.

«Второй и третий признаки равенства треугольников» - Стороны. Медиана в равнобедренном треугольнике. Второй и третий признаки равенства треугольников. Решение. Три стороны одного треугольника. Основание. Доказать. Свойства равнобедренного треугольника. Признаки равенства треугольников. Решение задач. Математический диктант. Углы. Задача. Периметр равнобедренного треугольника.

«Декартова система координат на плоскости» - Плоскость, на которой задана декартова система координат. Координаты в жизни людей. Система географических координат. Декартова система координат на плоскости. Проект по алгебре. Ученые, которые являются авторами координат. Древнегреческий астроном Клавдий. Клетка на игровом поле. Точка пересечения осей. Введение более простых обозначений в алгебру. Место в кинотеатре. Значение декартовой системы координат.

Часто нужно бывает начертить («построить») угол, который был бы равен данному углу, причем построение необходимо выполнить без помощи транспортира, а обходясь только циркулем и линейкой. Умея строить треугольник по трем сторонам, мы сможем решить и эту задачу. Пусть на прямой MN (черт. 60 и 61) требуется построить у точки K угол, равный углу B . Это значит, что надо из точки K провести прямую, составляющую с MN угол, равный B .

Для этого отметим на каждой из сторон данного угла по точке, например А и С , и соединим А и С прямой линией. Получим треугольник АВС . Построим теперь на прямой MN этот треугольник так, чтобы вершина его В находилась в точке К : тогда у этой точки и будет построен угол, равный углу В . Строить же треугольник по трем сторонам ВС, ВА и АС мы умеем: откладываем (черт. 62) от точки К отрезок KL, равный ВС ; получим точку L ; вокруг K , как около центра, описываем окружность радиусом ВА , а вокруг L – радиусом СА . Точку Р пересечения окружностей соединяем с К и Z, – получим треугольник КPL, равный треугольнику ABC ; в нем угол К = уг. В .

Это построение выполняется быстрее и удобнее, если от вершины В отложить р а в н ы е отрезки (одним расстворением циркуля) и, не сдвигая его ножек, описать тем же радиусом окружность около точки К, как около центра.

Как разделить угол пополам

Пусть требуется разделить угол А (черт. 63) на две равные части помощью циркуля и линейки, не пользуясь транспортиром. Покажем, как это сделать.

От вершины А на сторонах угла отложим равные отрезки АВ и АС (черт. 64; это делается одним расстворени-ем циркуля). Затем ставим острие циркуля в точки В и С и описываем равными радиусами дуги, пересекающиеся в точке D. Прямая, соединяющая А и Д делит угол А пополам.

Объясним, почему это. Если точку D соединим с В и С (черт. 65), то получатся два треугольника ADC и ADB, у которых есть общая сторона AD ; сторона АВ равна стороне АС , а ВD равна CD. По трем сторонам треугольники равны, а значит, равны и углы BAD и DАС, лежащие против равных сторон ВD и СD . Следовательно, прямая AD делит угол ВАС пополам.

Применения

12. Построить без транспортира угол в 45°. В 22°30’. В 67°30’.

Р е ш е н и е. Разделив прямой угол пополам, получим угол в 45°. Разделив угол в 45° пополам, получим угол в 22°30’. Построив сумму углов 45° + 22°30’, получим угол в 67°30’.

Как построить треугольник по двум сторонам и углу между ними

Пусть требуется на местности узнать расстояние между двумя вехами А и В (черт 66), разделенными непроходимым болотом.

Как это сделать?

Мы можем поступить так: в стороне от болота выберем такую точку С , откуда видны обе вехи и возможно измерить расстояния АС и ВС. У г о л С измеряем помощью особого угломерного прибора (называемого а с т р о л я б и е й). По этим данным, т. е. по измеренным сторонам AC и ВС и углу С между ними, построим треугольник ABC где-нибудь на удобной местности следующим образом. Отмерив по прямой линии одну известную сторону (черт. 67), например АС , строят при ней у точки С угол С ; на другой стороне этого угла отмеряют известную сторону ВС. Концы известных сторон, т. е. точки А и В соединяют прямой линией. Получается треугольник, в котором две стороны и угол между ними имеют наперед указанные размеры.

Из способа построения ясно, что по двум сторонам и углу между ними можно построить т о л ь к о о д и н треугольник. поэтому, если две стороны одного треугольника равны двум сторонам другого и углы между этими сторонами одинаковы, то такие треугольники можно друг на друга наложить всеми точками, т. е. у них должны быть равны также третьи стороны и прочие углы. Это значит, что равенство двух сторон треугольников и угла между ними может служить признаком полного равенства этих треугольников. Короче говоря:

Т р е у г о л ь н и к и р а в н ы п о д в у м с т о р о н а м и у г л у м е ж д у н и м и.


Построение угла, равного данному. Дано: угол А. А Построили угол О. В С О D E Доказать: А = О Доказательство: рассмотрим треугольники АВС и ОDE. 1.АС=ОЕ, как радиусы одной окружности. 2.АВ=ОD, как радиусы одной окружности. 3.ВС=DE, как радиусы одной окружности. АВС= ОDЕ (3 приз.) А = О


Докажем, что луч АВ – биссектриса А П Л А Н 1.Дополнительное построение. 2.Докажем равенство треугольников АСВ и АDB. 3. Выводы А В С D 1.АС=АD, как радиусы одной окружности. 2.СВ=DB, как радиусы одной окружности. 3.АВ – общая сторона. АСВ = АDВ, по III признаку равенства треугольников Луч АВ – биссектриса Построение биссектрисы угла.




A N B A C 1 = 2 12 В р/б треугольнике АМВ отрезок МС является биссектрисой, а значит, и высотой. Тогда, а МN. М Докажем, что а MN Посмотрим на расположение циркулей. АМ=АN=MB=BN, как равные радиусы. МN-общая сторона. MВN= MAN, по трем сторонам Построение перпендикулярных прямых. М a


Q P ВА АРQ = BPQ, по трем сторонам = 2 Треугольник АРВ р/б. Отрезок РО является биссектрисой, а значит, и медианой. Тогда, точка О – середина АВ. О Докажем, что О – середина отрезка АВ. Построение середины отрезка


D С Построение треугольника по двум сторонам и углу между ними. Угол hk h 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному. 4.Отложим отрезок АС, равный P 2 Q 2. В А Треугольник АВС искомый. Обоснуй, используя I признак. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2 Q1Q1 P1P1 P2P2 Q2Q2 а k


D С Построение треугольника по стороне и двум прилежащим к ней углам. Угол h 1 k 1 h2h2 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим угол, равный данному h 1 k 1. 4.Построим угол, равный h 2 k 2. В А Треугольник АВС искомый. Обоснуй, используя II признак. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 h1h1 k1k1 N


С 1.Построим луч а. 2.Отложим отрезок АВ, равный P 1 Q 1. 3.Построим дугу с центром в т. А и радиусом Р 2 Q 2. 4.Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Треугольник АВС искомый. Обоснуй, используя III признак. Дано: отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Построение треугольника по трем сторонам.

В задачах на построение будем рассматривать построение геометрической фигуры, которое можно выполнить с помощью линейки и циркуля.

С помощью линейки можно провести:

    произвольную прямую;

    произвольную прямую, проходящую через данную точку;

    прямую, проходящую через две данные точки.

С помощью циркуля можно описать из данного центра окружность данного радиуса.

Циркулем можно отложить отрезок на данной прямой от данной точки.

Рассмотрим основные задачи на построение.

Задача 1. Построить треугольник с данными сторонами а, b, с (рис.1).

Решение. С помощью линейки проведем произвольную прямую и возьмем на ней произвольную точку В. Раствором циркуля, равным а, описываем окружность с центром В и радиусом а. Пусть С - точка ее пересечения с прямой. Раствором циркуля, равным с, описываем окружность из центра В, а раствором циркуля, равным b - окружность из центра С. Пусть А - точка пересечения этих окружностей. Треугольник ABC имеет стороны, равные a, b, c.

Замечание. Чтобы три отрезка прямой могли служить сторонами треугольника, необходимо, чтобы больший из них был меньше суммы двух остальных (а < b + с).

Задача 2.

Решение. Данный угол с вершиной А и луч ОМ изображены на рисунке 2.

Проведем произвольную окружность с центром в вершине А данного угла. Пусть В и С - точки пересечения окружности со сторонами угла (рис.3, а). Радиусом АВ проведем окружность с центром в точке О - начальной точке данного луча (рис.3, б). Точку пересечения этой окружности с данным лучом обозначим С 1 . Опишем окружность с центром С 1 и радиусом ВС. Точка В 1 пересечения двух окружностей лежит на стороне искомого угла. Это следует из равенства Δ ABC = Δ ОВ 1 С 1 (третий признак равенства треугольников).

Задача 3. Построить биссектрису данного угла (рис.4).

Решение. Из вершины А данного угла, как из центра, проводим окружность произвольного радиуса. Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С тем же радиусом описываем окружности. Пусть D - точка их пересечения, отличная от А. Луч AD делит угол А пополам. Это следует из равенства Δ ABD = Δ ACD (третий признак равенства треугольников).

Задача 4. Провести серединный перпендикуляр к данному отрезку (рис.5).

Решение. Произвольным, но одинаковым раствором циркуля (большим 1/2 АВ) описываем две дуги с центрами в точках А и В, которые пересекутся между собой в некоторых точках С и D. Прямая CD будет искомым перпендикуляром. Действительно, как видно из построения, каждая из точек С и D одинаково удалена от А и В; следовательно, эти точки должны лежать на серединном перпендикуляре к отрезку АВ.

Задача 5. Разделить данный отрезок пополам. Решается так же, как и задача 4 (см. рис.5).

Задача 6. Через данную точку провести прямую, перпендикулярную данной прямой.

Решение. Возможны два случая:

1) данная точка О лежит на данной прямой а (рис. 6).

Из точки О проводим произвольным радиусом окружность, пересекающую прямую а в точках А и В. Из точек А и В тем же радиусом проводим окружности. Пусть О 1 - точка их пересечения, отличная от О. Получаем ОО 1 ⊥ AB. В самом деле, точки О и О 1 равноудалены от концов отрезка АВ и, следовательно, лежат на серединном перпендикуляре к этому отрезку.