Что такое баллистическая траектория ракеты, пули.

Баллистические ракеты были и остаются надежным щитом национальной безопасности России. Щитом, готовым, в случае необходимости, обернуться мечом.

Р-36М "Сатана"

Разработчик: КБ «Южное»
Длина: 33, 65 м
Диаметр: 3 м
Стартовый вес: 208 300 кг
Дальность полета: 16000 км
Советский стратегический ракетный комплекс третьего поколения, с тяжёлой двухступенчатой жидкостной, ампулизированной межконтинентальной баллистической ракетой 15А14 для размещения в шахтной пусковой установке 15П714 повышенной защищённости типа ОС.

«Сатаной» советский стратегический ракетный комплекс назвали американцы. На момент первого испытания в 1973 году эта ракета стала самой мощной баллистической системой, которая когда-либо была разработана. Ни одна система ПРО неспособна была противостоять SS-18, радиус поражения которой составлял аж 16 тысяч метров. После создания Р-36М, Советский Союз мог не беспокоится «гонки вооружений». Однако в 1980-ые «Сатана» был модифицирован, и в 1988 году на вооружение Советской армии поступила новая версия SS-18 - Р-36М2 «Воевода», против которой ничего сделать не могут сделать и современные американские ПРО.

РТ-2ПМ2. «Тополь-М»


Длина: 22,7 м
Диаметр: 1,86 м
Стартовый вес: 47,1 т
Дальность полета: 11000 км

Ракета РТ-2ПМ2 выполнена в виде трехступенчатой ракеты с мощной смесевой твердотопливной энергетической установкой и стеклопластиковым корпусом. Испытания ракеты начались в 1994 году. Первый пуск был проведён из шахтной пусковой установки на космодроме Плесецк 20 декабря 1994 года. В 1997 году, после четырёх успешных пусков начато серийное производство этих ракет. Акт о принятии на вооружение РВСН РФ межконтинентальной баллистической ракеты «Тополь-М» был утверждён Госкомиссией 28 апреля 2000 года. По состоянию на конец 2012 года, на боевом дежурстве находилось 60 ракет «Тополь-М» шахтного и 18 мобильного базирования. Все ракеты шахтного базирования стоят на боевом дежурстве в Таманской ракетной дивизии (Светлый, Саратовская область).

PC-24 «Ярс»

Разработчик: МИТ
Длина: 23 м
Диаметр: 2 м
Дальность полета: 11000 км
Первый запуск ракеты состоялся в 2007 году. В отличие от Тополя-М обладает разделяющимися боевыми частями. Помимо боевых блоков, Ярс также несет комплекс средств прорыва противоракетной обороны, что затрудняет противнику ее обнаружение и перехват. Такое нововведение делает РС-24 наиболее удачной боевой ракетой в условиях развертывания глобальной американской системы ПРО.

СРК УР-100Н УТТХ с ракетой 15А35

Разработчик: ЦКБ машиностроения
Длина: 24,3 м
Диаметр: 2,5 м
Стартовый вес: 105,6 т
Дальность полета: 10000 км
Межконтинентальная баллистическая жидкостная ракета 15А30 (УР-100Н) третьего поколения с разделяющейся головной частью индивидуального наведения (РГЧ ИН) была разработана в ЦКБ машиностроения под руководством В.Н.Челомея. Летно-конструкторские испытания МБР 15А30 проводились на полигоне Байконур (председатель госкомиссии - генерал-лейтенант Е.Б. Волков). Первый пуск МБР 15А30 состоялся 9 апреля 1973г. По официальным данным, на июль 2009 г. РВСН РФ имели 70 развернутых МБР 15А35: 1. 60-я ракетная дивизия (г. Татищево), 41 УР-100Н УТТХ 2. 28-я гвардейская ракетная дивизия (г. Козельск), 29 УР-100Н УТТХ.

15Ж60 "Молодец"

Разработчик: КБ «Южное»
Длина: 22,6 м
Диаметр: 2,4 м
Стартовый вес: 104,5 т
Дальность полета: 10000 км
РТ-23 УТТХ «Молодец» - стратегические ракетные комплексы с твёрдотопливными трёхступенчатыми межконтинентальными баллистическими ракетами 15Ж61 и 15Ж60, подвижного железнодорожного и стационарного шахтного базирования, соответственно. Явился дальнейшим развитием комплекса РТ-23. Были приняты на вооружение в 1987 году. На внешней поверхности обтекателя размещаются аэродинамические рули, позволяющие управлять ракетой по крену на участках работы первой и второй ступеней. После прохождения плотных слоев атмосферы обтекатель сбрасывается.

Р-30 "Булава"

Разработчик: МИТ
Длина: 11,5 м
Диаметр: 2 м
Стартовый вес: 36,8 т.
Дальность полета: 9300 км
Российская твёрдотопливная баллистическая ракета комплекса Д-30 для размещения на подводных лодках проекта 955. Первый запуск "Булавы" состоялся в 2005 году. Отечественные авторы часто критикуют разрабатываемый ракетный комплекс «Булава» за достаточно большую долю неудачных испытаний.Как утверждают критики, "Булава" появилась благодаря банальному желанию России сэкономить: стремление страны сократить расходы на разработку за счет унификации "Булавы" с сухопутными ракетами сделало ее производство дешевле, чем обычно.

Х-101/Х-102

Разработчик: МКБ «Радуга»
Длина: 7,45 м
Диаметр: 742 мм
Размах крыла: 3 м
Стартовый вес: 2200-2400
Дальность полета: 5000-5500 км
Стратегическая крылатая ракета нового поколения. Её корпус представляет собой низкоплан, однако имеет сплющенное поперечное сечение и боковые поверхности. Боевая часть ракеты весом в 400 кг может поражать сразу 2 цели на расстоянии 100 км друг от друга. Первая цель будет поражена боеприпасом, спускающимся на парашюте, а вторая непосредственно при попадании ракеты.При дальности полета на 5000 км показатель кругового вероятного отклонения (КВО) составляет всего 5-6 метров, а при дальности 10 000 км не превышает 10 м.

Межконтинентальная баллистическая ракета — весьма впечатляющее творение человека. Огромные размеры, термоядерная мощь, столб пламени, рев двигателей и грозный рокот пуска… Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то, что остается от ракеты после разгона — ее полезная нагрузка.

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…


Что это, собственно, за нагрузка?

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки. Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.


Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.


На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.


К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?


Подводные лодки проекта 955 «Борей» — серия российских атомных подводных лодок класса «ракетный подводный крейсер стратегического назначения» четвертого поколения. Первоначально проект создавался под ракету «Барк», ей на смену пришла «Булава».

Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.


Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24 баллистических ракеты с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.


В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.


Полезная нагрузка межконтинентальной баллистической ракеты большую часть полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь. Недолгую, но насыщенную.

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?


На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!


Все сейчас горит огнем, все обтянуто раскаленной плазмой и хорошо светит вокруг оранжевым цветом углей из костра. Более плотные части уходят тормозиться вперед, более легкие и парусные сдуваются в хвост, растягивающийся по небу. Все горящие компоненты дают плотные дымовые шлейфы, хотя на таких скоростях этих самых плотных шлейфов быть не может из-за чудовищного разбавления потоком. Но издали их видно прекрасно. Выброшенные частицы дыма растягиваются по следу полета этого каравана кусков и кусочков, наполняя атмосферу широким белым следом. Ударная ионизация порождает ночное зеленоватое свечение этого шлейфа. Из-за неправильной формы фрагментов их торможение стремительно: все, что не сгорело, быстро теряет скорость, а с ней и горячительное действие воздуха. Сверхзвук — сильнейший тормоз! Став в небе, словно разваливающийся на путях поезд, и тут же охладившись высотным морозным дозвуком, полоса фрагментов становится визуально неразличимой, теряет свою форму и строй и переходит в долгое, минут на двадцать, тихое хаотичное рассеивание в воздухе. Если оказаться в нужном месте, можно услышать, как тихо звякнет об ствол березы маленький обгорелый кусочек дюраля. Вот ты и прибыла. Прощай, ступень разведения!

За свою почти тысячелетнюю историю развития ракетная техника прошла гигантский путь от примитивных «огненных стрел» до мощнейших современных ракет-носителей, способных выводить на орбиту многотонные космические аппараты. Изобретена же ракета была в Китае. Первые документальные сведения о ее боевом применении связаны с осадой монголами китайского города Пиен-Кинга в 1232 году. Китайские ракеты, запускавшиеся тогда из крепости и наводившие страх на монгольскую конницу, представляли собой небольшие мешочки, набитые порохом и привязанные к стреле обычного лука.

Вслед за китайцами зажигательные ракеты начали использовать индийцы и арабы, но с распространением огнестрельного оружия ракеты потеряли свое значение и на много веков были вытеснены из широкого военного употребления.

Вновь интерес к ракете как к боевому оружию пробудился в XIX веке. В 1804 году значительные усовершенствования в конструкцию ракеты внес английский офицер Уильям Конгрев, который впервые в Европе сумел наладить массовое производство боевых ракет. Масса его реактивных снарядов достигала 20 кг, а дальность полета - 3 км. При надлежащей сноровке ими можно было поражать цели на расстоянии до 1000 м. В 1807 году англичане широко применили это оружие при бомбардировке Копенгагена. В короткий срок по городу было выпущено более 25 тысяч ракет, в результате чего город был почти полностью сожжен. Но вскоре развитие нарезного огнестрельного оружия сделало применение ракет малоэффективным. Во второй половине XIX века они были сняты с вооружения в большинстве государств. Вновь почти на сто лет ракета получила отставку.

Впрочем, различные проекты использования реактивной тяги уже в то время появлялись то у одного, то у другого изобретателя. В 1903 году вышла работа «Исследование космических пространств реактивными приборами» русского ученого Константина Циолковского. В ней Циолковский не только предсказал, что ракета станет когда-нибудь тем транспортным средством, которое выведет человека в космос, но и впервые разработал принципиальную схему нового жидкостного реактивного двигателя. Вслед за тем в 1909 году американский ученый Роберт Годдард впервые высказал идею о создании и использовании многоступенчатой ракеты. В 1914 году он взял патент на эту конструкцию.

Преимущество использования нескольких ступеней заключается в том, что после полного израсходования топлива из баков ступени она отбрасывается. Тем самым уменьшается масса, которую необходимо разогнать до еще более высоких скоростей. В 1921 году Годдард провел первые испытания своего жидкостного реактивного двигателя, который работал на жидком кислороде и эфире. В 1926 году он произвел первый публичный запуск ракеты с жидкостным двигателем, которая, правда, поднялась всего на 12, 5 м. В дальнейшем Годдард уделял много внимания устойчивости и управляемости ракет. В 1932 году он впервые запустил ракету с гироскопическими рулями.

В конечном итоге его ракеты, имея стартовый вес до 350 кг, поднимались на высоту до 3 км. В 30-е годы интенсивные работы по совершенствованию ракет велись уже в нескольких странах.

Принцип работы жидкостного реактивного двигателя в общих чертах очень прост. Топливо и окислитель находятся в отдельных баках. Под высоким давлением они подаются в камеру сгорания, где интенсивно перемешиваются, испаряются, вступают в реакцию и воспламеняются. Образующиеся при этом горячие газы с большой силой выбрасываются назад через сопло, что приводит к появлению реактивной тяги.

Однако реальное воплощение этих простых принципов наталкивалось на большие технические трудности, с которыми и столкнулись первые конструкторы. Наиболее острыми из них оказались проблемы обеспечения устойчивого горения топлива в камере сгорания и охлаждения самого двигателя. Очень непростыми были также вопросы о высокоэнергетическом горючем для ракетного двигателя и о способах подачи компонентов топлива в камеру сгорания, поскольку для полного сгорания с выделением максимального количества тепла они должны были хорошо распыляться и равномерно перемешиваться между собой во всем объеме камеры. Кроме того, требовалось разработать надежные системы, регулирующие работу двигателя и управление ракетой. Понадобилось множество экспериментов, ошибок и неудач, прежде чем все эти трудности были благополучно преодолены.

Вообще говоря, жидкостные двигатели могут работать и на однокомпонентном, так называемом унитарном, топливе. В качестве такового могут выступать, например, концентрированная перекись водорода или гидразин. При соединении с катализатором перекись водорода H2O2 с большим выделением тепла разлагается на кислород и воду. Гидразин N2H4 в этих условиях разлагается на водород, азот и аммиак. Но многочисленные испытания показали, что более эффективными являются двигатели, работающие на двух отдельных компонентах, один из которых является горючим, а другой окислителем. Хорошими окислителями оказались жидкий кислород O2, азотная кислота HNO3, различные окислы азота, а также жидкий фтор F2.

В качестве горючего мог применяться керосин, жидкий водород H2, (в соединении с жидким кислородом он является чрезвычайно эффективным горючим), гидразин и его производные. На начальных этапах развития ракетной техники в качестве горючего часто использовался этиловый или метиловый спирт.

Для лучшего распыления и перемешивания топлива (окислителя и горючего) использовались специальные форсунки, расположенные в передней части камеры сгорания (эта часть камеры называется форсуночной головкой). Она, как правило, имела плоскую форму, образованную из множества форсунок. Все эти форсунки выполнялись в виде двойных трубок для одновременной подачи окислителя и горючего. Впрыск топлива происходил под большим давлением. Мелкие капельки окислителя и горючего при высокой температуре интенсивно испарялись и вступали друг с другом в химическую реакцию. Основное горение топлива происходит вблизи форсуночной головки. При этом сильно возрастали температура и давление образующихся газов, которые затем устремлялись в сопло и с большой скоростью вырывались наружу.

Давление в камере сгорания может достигать сотен атмосфер, поэтому горючее и окислитель необходимо подводить под еще более высоким давлением. Для этого в первых ракетах использовался наддув топливных баков сжатым газом или парами самих компонентов топлива (например, парами жидкого кислорода). Позже стали применять специальные высокопроизводительные насосы большой мощности с приводом от газовых турбин. Для раскрутки газовой турбины на начальном этапе работы двигателя подавали горячий газ от газогенератора. Позже стали применять горячий газ, образующийся из компонентов самого топлива. После разгона турбины этот газ попадал в камеру сгорания и использовался для разгона ракеты.

Проблему охлаждения двигателя первоначально пытались решить, применяя особые жаропрочные материалы или специальную охлаждающую жидкость (например, воду). Однако постепенно был найден более выгодный и эффективный метод охлаждения путем использования одного из компонентов самого топлива. Перед вступлением в камеру один из компонентов топлива (например, жидкий кислород) проходил между ее внутренней и наружной стенкой и уносил с собой значительную часть тепла от самой теплонапряженной внутренней стенки. Отработана эта система была далеко не сразу, и поэтому на первых этапах создания ракетих старты часто сопровождались авариями и взрывами.

Для управления в первых ракетах применялись воздушные и газовые рули. Газовые рули располагались у среза сопла и создавали управляющие силы и моменты за счет отклонения вытекающей из двигателя струи газа. По форме они напоминали лопасти весла. Во время полета эти рули быстро обгорали и разрушались. Поэтому в дальнейшем от их использования отказались и стали применять специальные управляющие ракетные двигатели, которые имели возможность поворачиваться относительно осей крепления.

В СССР опыты по созданию ракет на жидкостных двигателях начались в 30-е годы. В 1933 году московская группа изучения реактивного движения (ГИРД) разработала и запустила первую советскую ракету ГИРД-09 (конструкторы Сергей Королев и Михаил Тихонравов). Эта ракета при длине 2, 4 м и диаметре 18 см имела стартовую массу 19 кг. Масса топлива, состоящего из жидкого кислорода и сгущенного бензина, равнялась примерно 5 кг.

Двигатель развивал тягу до 32 кг и мог работать 15-18 с. При первом запуске из-за прогара камеры сгорания газовые струи начали вырываться сбоку, что привело к завалу ракеты и ее пологому полету. Максимальная высота полета составляла 400 м.

В последующие годы советские ракетчики провели еще несколько запусков. К сожалению, в 1939 году Реактивный научно-исследовательский институт (в который в 1933 году была преобразована ГИРД) был разгромлен НКВД. Многие конструкторы были отправлены в тюрьмы и лагеря. Королев был арестован еще в июле 1938 года. Вместе с Валентином Глушко, будущим главным конструктором ракетных двигателей, он провел несколько лет в спец КБ в Казани, где Глушко числился главным конструктором двигательных установок для самолетов, а Королев его заместителем. На некоторое время развитие ракетостроения в СССР прекратилось.

Гораздо более ощутимых результатов добились немецкие исследователи. В 1927 году здесь образовалось общество Межпланетных путешествий, которым руководили Вернер фон Браун и Клаус Ридель. С приходом к власти фашистов эти ученые стали работать над созданием боевых ракет. В 1937 году возник ракетный центр в Пенемюнде. В его строительство за четыре года было вложено 550 миллионов марок. В 1943 году численность основного персонала в Пенемюнде составляла уже 15 тысяч человек. Здесь находились крупнейшая в Европе аэродинамическая труба и завод по производству жидкого кислорода. В центре были разработаны самолет-снаряд «Фау-1», а также первая в истории серийная баллистическая ракета «Фау-2» со стартовой массой 12700 кг (баллистической называется такая ракета, которая управляется только на начальном участке полета; после выключения двигателей она летит как свободно брошенный камень). Работа над ракетой началась еще в 1936 году, когда Брауну и Риделю были приданы в помощь 120 сотрудников и несколько сотен рабочих. Первый экспериментальный запуск «Фау-2» состоялся в 1942 году и оказался неудачным. Из-за отказа системы управления ракета врезалась в землю через 1, 5 минуты после старта. Новый старт в октябре 1942 года оказался успешным. Ракета поднялась на высоту 96 км, достигла дальности 190 км и разорвалась в четырех км от заданной цели.

При создании этой ракеты было сделано множество находок, широко используемых потом в ракетостроении, но было также много недоработок. На «Фау» впервые была применена турбонасосная подача топлива в камеру сгорания (до этого обычно применялось вытеснение его сжатым азотом). Для раскрутки газовой турбины использовали перекись водорода. Проблему охлаждения двигателя пытались сначала решить, используя для стенок
камеры сгорания толстые стальные листы с плохой теплопроводностью. Но первые же старты показали, что из-за этого двигатель быстро перегревается. Чтобы снизить температуру горения, пришлось разбавлять этиловый спирт 25% воды, что в свою очередь сильно снизило КПД
двигателя.

В январе 1944 года начался серийный выпуск «Фау». Эта ракета с дальностью полета до 300 км несла боевой заряд весом до 1 т. С сентября 1944 года немцы стали обстреливать ими территорию Великобритании. Всего было изготовлено 6100 ракет и проведено 4300 боевых пусков. До Англии долетело 1050 ракет и половина из них взорвалась непосредственно в Лондоне. В результате этого погибло около 3 тысяч человек и вдвое больше получило ранения. Максимальная скорость полета «Фау-2» достигала 1, 5 км/с, а высота полета - около 90 км. Ни перехватить, ни сбить эту ракету у англичан не было никакой возможности.

Но из-за несовершенной системы наведения они в целом оказались достаточно неэффективным оружием. Однако с точки зрения развития ракетной техники «Фау» представляли собой гигантский шаг вперед. Главное заключалось в том, что в будущее ракет поверили во всем мире. После
войны ракетостроение получило во всех государствах мощную государственную поддержку.

США оказались поначалу в более благоприятных условиях многие немецкие ракетчики во главе с самим Брауном после разгрома Германии были доставлены в Америку, точно так же как и несколько готовых «Фау». Этот потенциал послужил исходным пунктом для развития американской ракетной индустрии. В 1949 году, установив «Фау-2» на небольшую исследовательскую ракету «Вак-Корпорэл», американцы осуществили ее запуск на высоту 400 км. На базе той же «Фау» под руководством Брауна была в 1951 году создана американская баллистическая ракета «Викинг», развивавшая скорость около 6400 км/ч. В 1952 году тот же Браун разработал для США баллистическую ракету «Редстоун» с дальностью полета до 900 км (именно эта ракета была использована в 1958 г. в качестве первой ступени при выведении на орбиту первого американского спутника «Эксплорер-1»).
СССР пришлось догонять американцев. Создание собственных тяжелых баллистических ракет здесь также началось с изучения немецких «Фау-2». Для этого сразу же после победы в Германию была направлена группа конструкторов (в числе которых находились Королев и Глушко). Правда, им не удалось заполучить ни одной готовой целой «Фау», но по косвенным признакам и многочисленным свидетельствам представление о ней было составлено достаточно полное.

В 1946 году в СССР начались собственные интенсивные работы по созданию автоматически управляемых баллистических ракет дальнего действия.

Организованное Королевым НИИ-88 (позже ЦНИИМаш в подмосковных Подлипках, ныне город Королев) сразу получило значительные средства и всестороннюю государственную поддержку. В 1947 году на базе «Фау-2» была создана первая советская баллистическая ракета Р-1. Этот первый успех дался с огромным трудом. При разработке ракеты советские инженеры столкнулись с множеством проблем. Советская промышленность не выпускала тогда необходимых для ракетостроения марок стали, не было нужной резины и нужных пластмасс. Огромные трудности возникли при работе с жидким кислородом, поскольку все имевшиеся тогда смазочные масла мгновенно загустевали при низкой температуре, и рули переставали работать.

Пришлось разрабатывать новые типы масел. Общая культура производства ни в коей мере не соответствовала уровню ракетной техники. Точность изготовления деталей, качество сварки долгое время оставляли желать лучшего. Испытания, проведенные в 1948 году на полигоне Капустин Яр,
показали, что Р-1 не только не превосходят «Фау-2», но и уступают им по многим параметрам. Почти ни один старт не проходил гладко. Пуски некоторых ракет откладывались из-за неполадок по много раз. Из 12 предназначенных для испытаний ракет с большим трудом удалось запустить
только 9. Испытания, проведенные в 1949 году, дали уже значительно лучшие результаты: из 20 ракет 16 попали в заданный прямоугольник 16 на 8 км. Не было ни одного отказа в запуске двигателя. Но и после этого прошло еще много времени, прежде чем научились конструировать надежные
ракеты, которые стартовали, летели и попадали в цель. В 1949 году на базе Р-1 была разработана геофизическая высотная ракета В-1А со стартовой массой около 14 т (при диаметре около 1, 5 м она имела высоту 15 м). В 1949 году эта ракета доставила на высоту 102 км контейнер с научными приборами, который затем благополучно вернулся на землю. В 1950 году Р-1 была принята на вооружение.

С этого момента советские ракетчики уже опирались на собственный опыт и вскоре превзошли не только своих учителей-немцев, но и американских конструкторов. В 1950 году была создана принципиально новая баллистическая ракета Р-2 с одним несущим баком и отделяющейся головной частью. (Топливные баки в «Фау» были подвесные, то есть не несли на себе никакой силовой нагрузки.

Советские конструкторы поначалу переняли эту схему. Но в дальнейшем они перешли к использованию несущих баков, когда наружная оболочка, то есть корпус ракеты, служил в качестве стенок топливных баков, или, что то же самое, топливные баки составляли корпус ракеты.) По своим размерам Р-2 была вдвое больше Р-1, но благодаря применению специально разработанных алюминиевых сплавов превосходила ее по весу всего на 350 кг. В качестве топлива здесь по-прежнему использовались этиловый спирт и жидкий кислород.

В 1953 году была принята на вооружение ракета Р-5 с дальностью полета 1200 км. Созданная на ее базе геофизическая ракета В-5А (длина - 29 м, стартовая масса около 29 т) могла поднимать грузы на высоту до 500 км. В 1956 году были проведены испытания ракеты Р-5М, которая впервые в мире пронесла через космос головную часть с ядерным зарядом. Ее полет завершился подлинным ядерным взрывом в заданном районе Аральских Каракумов в 1200 км от места старта. Королев и Глушко после этого получили звезды Героев Социалистического труда.

До середины 50-х годов все советские ракеты были одноступенчатыми. В 1957 г. с нового космодрома в Байконуре была успешно запущена боевая межконтинентальная многоступенчатая баллистическая ракета Р-7. Эта ракета длиной около 30 м и весом около 270 т состояла из четырех боковых
блоков первой ступени и центрального блока с собственным двигателем, который служил второй ступенью. В первой ступени использовался двигатель РД-107, во второй ступени - РД-108 на кислородно-керосиновом топливе. При старте все двигатели включались одновременно и развивали тягу около
400 т.

О преимуществах многоступенчатых ракет перед одноступенчатыми уже говорилось выше. Возможны две схемы расположения ступеней. В первом случае наиболее массивная ракета, расположенная внизу и срабатывавшая в самом начале полета, называется первой ступенью. Обычно на нее устанавливается вторая ракета меньших размеров и массы, которая служит второй ступенью. На ней в свою очередь может размещаться третья ракета и так далее в зависимости оттого, сколько требуется ступеней. Это тип ракеты с последовательным расположением ступеней. Р-7 относилась к другому типу - с продольным разделением ступеней. Отдельные блоки (двигатели и баки с горючим) первой ступени располагались в ней вокруг корпуса второй ступени, и при старте двигатели обеих ступеней начинали работать одновременно. После выработки топлива блоки первой ступени отбрасывались, а двигатели второй ступени продолжали работать дальше.

Несколькими месяцами позже, в том же 1957 году, именно эта ракета вывела на орбиту первый в истории искусственный спутник Земли.

Общая оценка материала: 4.8

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

«Нудоль» — убийца спутников Межконтинентальная баллистическая ракета РС-26 «Рубеж» Глобальный контрудар — быстрый и глобальнай ответ на ПРО США

Ракетное вооружение является главенствующим направлением в военной обороне всех ведущих держав, поэтому так важно знать: МБР – что это? На сегодняшний день межконтинентальные баллистические ракеты являются самым мощным средством сдерживания угрозы ядерного нападения.

МБР - что это такое?

Управляемая межконтинентальная баллистическая ракета имеет классность «земля-земля» и дальность полета более 5500 км. Ее оснащение – ядерные боевые части, которые предназначены для уничтожения исключительно важных, расположенных на других континентах стратегических объектов вероятного противника. Данный вид ракет по возможным способам базирования подразделяют на запускаемые с:

  • наземных станций - этот способ базирования в настоящее время считается устаревшим и не используется с 1960 г);
  • стационарной шахтной ракетной установки (ШПУ). Самый высокозащищенный стартовый комплекс от ядерного взрыва и иных поражающих факторов;
  • мобильных переносных, на базе колесного шасси установок. Этот и последующие базы являются самыми труднообнаружимыми, но имеющими размерные ограничения для самих ракет;
  • железнодорожных установок;
  • подлодок.

Высота полета МБР

Одна из наиважнейших для точности поражения цели характеристик это высота полета межконтинентальной баллистической ракеты. Запуск производится при строго вертикальном положении ракеты, для ускоренного выхода из плотных атмосферных слоев. Далее происходит наклон в сторону запрограммированной цели. Двигаясь по заданной траектории, ракета в наивысшей точке может достигать высоты в 1000 и более км.

Скорость полета МБР

Точность поражения цели противника во многом зависит от правильно заданной на начальном этапе, при запуске, скорости. В наивысшей точке полета МБР имеет наименьшую скорость, при отклонении в сторону цели скорость увеличивается. Большую часть ракета проходит по инерции, но в тех слоях атмосферы, где противодействие воздуха практически отсутствует. При спуске до соприкосновения с целью скорость межконтинентальной баллистической ракеты может составлять около 6 км в сек.

Испытания МБР

Первая страна, приступившая к созданию баллистической ракеты, стала Немецкая Германия, но достоверных данных о возможно проведенных испытаниях не существует, работы были приостановлены на стадии разработки чертежей и создания эскизов. В дальнейшем испытания межконтинентальной баллистической ракеты проводились в следующем хронологическом порядке:

  1. США в 1948 г. произвели запуск прототипа МБА.
  2. СССР в 1957 г. произведен успешный запуск двухступенчатой ракеты «Семерка».
  3. США в 1958 г. была запущен «Атлас», в дальнейшем он стала первой в государстве МБР взятой на вооружение.
  4. СССР в 1962 г. произведен запуск ракеты из шахтной установки.
  5. США в 1962 г. прошли испытания, и была взята на вооружение первая ракета на твердом топливе.
  6. СССР в 1970 г. прошли испытания, и была принята на гос. вооружение ракета с тремя разделяющимися боевыми блоками.
  7. США с 1970 г. принят на гос. вооружение «Минитмен», единственный запускаемый с наземной базы.
  8. СССР в 1976 г. приняты на гос. вооружение первые ракеты мобильного запуска.
  9. СССР в 1976 г. приняты на вооружение первые ракеты, запускаемые с железнодорожных установок.
  10. СССР в 1988 г. прошла испытание, и принята на вооружение самая многотонная и мощная МБР в истории вооружения.
  11. Россия в 2009 г. произошел учебный запуск последней модификации МБР «Воевода».
  12. Индия в 2012 г. провела испытание МБР.
  13. Россия в 2013 г. проведен испытательный запуск нового прототипа МБР с мобильной установки для запуска.
  14. США в 2017 г. проведены испытание наземной «Минитмен 3».
  15. 2017 г. КНДР впервые испытала межконтинентальную баллистическую ракету.

Лучшие МБР мира

Межконтинентальные баллистические установки разделяют по нескольким важным для успешного поражения цели параметрам:

  1. Лучшая из мобильных установок – «Тополь М». Страна – Россия, запущена в 1994 г., твердотопливная, моноблочная.
  2. Самая перспективная для дальнейшей модернизации – Ярс РС-24. Страна – Россия, запущена в 2007 г., твердотопливная.
  3. Самая мощная МБР – «Сатана». Страна - СССР, запущена в 1970 г., двухступенчатая, твердотопливная.
  4. Лучшая из дальнобойных - БРПЛ Trident II D5. Страна – США, запущена в 1987 г., трехступенчатая.
  5. Самая скоростная – «Минитмен LGM-30G». Страна – США, запущена в 1966 г.

Межконтинентальная баллистическая ракета «Сатана»

«Воевода» межконтинентальная баллистическая ракета это самая мощная ядерная установка из существующих в мире. На Западе, в странах НАТО ее называют «Сатана». На вооружении в России состоит две технической модификации данной ракеты. Последняя из разработок может вести боевые действия (поражение заданной цели) при всех возможных условиях, в т. ч. при условии ядерного взрыва (или неоднократных взрывов).

МБР, что же это означает в плане общих характеристик. Например, то что «Воевода» превосходит по мощности запущенный недавно Американский «Минитмен»:

  • 200 м – погрешность попадания;
  • 500 кв. км – радиус поражения;
  • не инфицируется радарами из-за созданных при полете «ложных целей»;
  • в мире не имеется ПРО способного разрушить ядерную головку ракеты.

Межконтинентальная баллистическая ракета «Булава»

«Булава» МБР это последняя разработка российских ученых и инженеров. В технических характеристиках указано:

  • твердотопливная (применяется топливо 5-го поколения);
  • трехступенчатая;
  • астрорадиоинерциальная система управления;
  • запуск с подлодок, «на ходу»;
  • радиус воздействия 8 тыс. км;
  • вес при старте 36,8 т;
  • выдерживает попадание любого лазерного оружия;
  • испытания не окончены;
  • остальные технические характеристики засекречены.

Межконтинентальные ракеты мира

От того как летит межконтинентальная баллистическая ракета (амплитуда движения) зависят скоростные и ударные показатели. Помимо России и США существует еще несколько мировых держав, на вооружении которых стоят МБР, это Франция и Китай:

  1. Китай (DF-5A) – дальность полета 13 000 км, двухступенчатая, жидкотопливная.
  2. Китай (DF-31A) – дальность полета 11 200 км, твердотопливная, трехступенчатая.
  3. Франция (М51) – дальность полета 10 000 км, твердотопливная, запуск с подлодок.

Военная политика любого государства базируется на охране государственных границ, государственного суверенитета и национальной безопасности. Поэтому стоит задать вопрос: МБР - что это может означать для действенной охраны границ РФ? Российская военная доктрина предполагает право на ответную реакцию при применении в отношении ее агрессии. В связи с этим находящиеся на вооружении баллистические ракеты являются самым действующим средством сдерживание зарубежной агрессии.

May 10th, 2016

Межконтинентальная баллистическая ракета - весьма впечатляющее творение человека. Огромные размеры, термоядерная мощь, столб пламени, рев двигателей и грозный рокот пуска. Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то, что остается от ракеты после разгона - ее полезная нагрузка.

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки.

Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.

Голова «Миротворца», На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.

Огненная десятка, К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?

Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.

В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.


Межконтинентальная баллистическая ракета Р-36М Воевода Воевода,

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь.

Недолгую, но насыщенную.

Полезная нагрузка межконтинентальной баллистической ракеты большую часть полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?


На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!


Подводный меч Америки, Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24 баллистических ракеты с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

Время не стоит на месте.

Компании Raytheon, Lockheed Martin и Boeing завершили первый и ключевой этап, связанный с разработкой оборонного заатмосферного кинетического перехватчика (Exoatmospheric Kill Vehicle, EKV), который является составной частью мега-проекта — разрабатываемой Пентагоном глобальной противоракетной обороны, основанной на противоракетах, каждая из которых способна нести НЕСКОЛЬКО боеголовок кинетического перехвата (Multiple Kill Vehicle, MKV) для поражения МБР с разделяющимися, а также "ложными" боеголовками

"Достигнутый рубеж является важной частью фазы разработки концепции", — заявила пресс-служба Raytheon, добавив, что это "соответствует планам MDA и является основой для запланированного на декабрь дальнейшего согласования концепции".

Отмечается, что Raytheon в данном проекте использует опыт создания EKV, который задействован в функционирующей с 2005 года американской глобальной ПРО — Наземной системы противоракетной обороны на маршевом участке полета (Ground-Based Midcourse Defense, GBMD), которая предназначена для перехвата межконтинентальных баллистических ракет и их боевых частей в космическом пространстве за пределами атмосферы Земли. В настоящее время для защиты континентальной территории США развёрнуто 30 противоракет на Аляске и в Калифорнии и ещё 15 ракет планируется развернуть к 2017 году.

Заатмосферный кинетический перехватчик, который станет основой для ныне создаваемой MKV — основной поражающий элемент комплекса GBMD. 64-килограмовый снаряд выводится противоракетой в космическое пространство, где осуществляет перехват и контактное поражение вражеской боеголовки благодаря электронно-оптической системы наведения, защищённой от посторонней засветки специальным кожухом и автоматическими фильтрами. Перехватчик получает целеуказание с наземных радаров, устанавливает сенсорный контакт с боеголовкой и наводится на неё, маневрируя в космическом пространстве с помощью ракетных двигателей. Поражение боеголовки осуществляется лобовым тараном на встречном курсе совокупной скорости 17 км/с: перехватчик летит со скоростью 10 км/c, боеголовка МБР — со скоростью 5-7 км/с. Кинетической энергии удара, составляющей около 1 тонну в тротиловом эквиваленте, хватает, чтобы полностью уничтожить боевой блок любой мыслимой конструкции, причем таким образом, что боеголовка полностью уничтожается.

В 2009 году США приостановили разработку программы борьбы с разделяющимися боеголовками ввиду чрезвычайной сложности производства механизма блоков разведения. Однако в текущем году программа была возрождена. Согласно аналитическим данным Newsader, это связано с возросшей агрессией со стороны России и соответствующих угроз применить ядерное оружие, которые не раз высказывались высшими чиновниками РФ, в том числе самим президентом Владимиром Путиным, который в комментарии по ситуации с аннексией Крыма откровенно признался, что он якобы был готов применить ядерное оружие в возможном конфликте с НАТО (последние события, связанные с уничтожением турецкими ВВС российского бомбардировщика, ставят под сомнение искренность Путина и наводят на мысли о "ядерном блефе" с его стороны). Между тем, как известно, именно Россия является единственным в мире государством, предположительно владеющим баллистическими ракетами с разделяющимися ядерными боеголовками, в том числе "ложными" (отвлекающими).

В Raytheon заявили, что их детище будет способно уничтожить сразу несколько объектов с помощью усовершенствованного сенсора и иных новейших технологий. По данным компании, в течение времени, которое прошло между реализацией проектов Standard Missile-3 и EKV, разработчикам удалось достичь рекордной результативности в перехвате учебных целей в космосе — более 30, что превышает показатели конкурентов.

Россия тоже не стоит на месте.

По сообщению открытых источников, в этом году состоится первый пуск новой межконтинентальной баллистической ракеты РС-28 "Сармат", которая должна прийти на смену предыдущему поколению ракет РС-20А, известных по классификации НАТО как "Сатана", у нас же как "Воевода".

Программа разработки баллистической ракеты (МБР) РС-20А была реализована в рамках стратегии "гарантированного ответного удара". Политика президента Рональда Рейгана по обострению противостояния СССР и США вынудила принимать адекватные ответные меры, чтобы охладить пыл "ястребов" из президентской администрации и Пентагона. Американские стратеги полагали, что вполне в состоянии обеспечить такой уровень защиты территории своей страны от атаки советских МБР, что можно попросту наплевать на достигнутые международные соглашения и продолжать совершенствовать собственный ядерный потенциал и системы противоракетной обороны (ПРО). "Воевода" как раз и был очередным "асимметричным ответом" на действия Вашингтона.

Самым неприятным сюрпризом для американцев стала разделяющаяся боеголовка ракеты, которая содержала 10 элементов, каждый из которых нес атомный заряд мощностью до 750 килотонн в тротиловом эквиваленте. На Хиросиму и Нагасаки, например, сбросили бомбы, мощность которых была "всего лишь" 18-20 килотонн. Такие боеголовки были способны преодолевать тогдашние системы американской ПРО, кроме того, была доработана и инфраструктура, обеспечивающая пуск ракет.

Разработка новой МБР призвана решить сразу несколько задач: во-первых, заменить "Воеводу", возможности которого по преодолению современной американской противоракетной обороны (ПРО) снизились; во-вторых, решить проблему зависимости отечественной промышленности от украинских предприятий, поскольку комплекс разрабатывался в Днепропетровске; наконец, дать адекватный ответ на продолжение программы развертывания ПРО в Европе и системы "Иджис".

По ожиданиям The National Interest, ракета "Сармат" будет весить как минимум 100 тонн, а масса ее головной части может достичь 10 тонн. Это значит, продолжает издание, что ракета сможет переносить до 15 разделяющихся термоядерных головных частей.
"Дальность "Сармата" будет не менее 9500 километров. Когда ее примут на вооружение, это будет самая большая ракета в мировой истории", — отмечается в статье.

По сообщениям, появившимся в прессе, головным предприятием по производству ракеты станет НПО "Энергомаш", а двигатели будет поставлять пермский "Протон-ПМ".

Главное отличие "Сармата" от "Воеводы" - возможность выведения боеголовок на круговую орбиту, что резко снижает ограничения по дальности, при таком способе запуска атаковать территорию противника можно не по кратчайшей траектории, а по любой и с любого направления - не только через Северный полюс, но и через Южный.

Кроме того, проектировщики обещают, что будет реализована идея маневрирующих боеголовок, которая позволит противостоять всем типам существующих противоракет и перспективных комплексов, использующих лазерное оружие. Зенитные ракеты "Patriot", которые составляют основу американской ПРО, пока не могут эффективно бороться с активно маневрирующими целями, летящими на скоростях, близких к гиперзвуку.
Маневрирующие боеголовки обещают стать настолько эффективным оружием, против которого пока нет равных по надежности средств противодействия, что не исключен вариант создания международного соглашения, запрещающего или значительно ограничивающего данный вид вооружений.

Таким образом, вместе с ракетами морского базирования и мобильными железнодорожными комплексами "Сармат" станет дополнительным и достаточно эффективным фактором сдерживания.

Если это произойдет, то усилия по размещению систем ПРО в Европе могут пропасть даром, поскольку траектория запуска ракеты такова, что неясно, куда именно будут нацелены боеголовки.

Сообщается так же, что ракетные шахты будут оборудованы дополнительной защитой от близких разрывов ядерных боеприпасов, что значительно повысит надежность всей системы.

Первые опытные образцы новой ракеты уже построены. Начало пусковых испытаний намечено на текущий год. Если испытания пройдут успешно, начнется серийное производство ракет «Сармат», а в 2018 году они поступят на вооружение.

источники