Логика высказываний: теория и применение. Примеры решений задач

Основным разделом математической логики является логика высказываний.

Высказыванием называют повествовательное предложение, которое имеет определенное значение истинности: истина или ложь. Истинному высказыванию ставится в соответствии 1, ложному – 0. Высказывания обозначаются буквами латинского алфавита.

Примеры простых высказываний:

1. А= «Число 100 больше числа 10»

2. В= «Сегодня я в школу не пойду»

Задания.

1) Объясните, почему следующие предложения не являются высказываниями:

1. Какого цвета этот дом?

2. Число Х не превосходит единицы.

4. Посмотрите в окно.

5. Пейте томатный сок!

6. Эта тема скучна.

7. Валерий Леонтьев – популярный певец.

2) Приведите примеры простых высказываний, определите их истинность или ложность.

Используя простые высказывания, можно образовать сложные , или составные, высказывания, в которые простые входят в качестве элементарных составляющих. Примеры сложных высказываний:

1. А= «Число 100 больше 10, но меньше 1000»

2. В= «Если завтра будет дождь, то в поход мы не пойдем»

Какие простые высказывания входят в сложные А и В?

В образовании сложных высказываний используются слова: и, или, тогда и только тогда, когда (в том и только в том случае), если..., то..., нет. Их называют логическими связками или логическими операциями.

Основная задача логики высказываний заключается в том, чтобы на основании истинности или ложности простых высказываний определить истинность или ложность сложных высказываний.

Логические операции

1) Инверсия (операция отрицания или логическое отрицание, НЕ). Обозначается ù, ` .

Если А - истинное высказывание, то `А – ложное высказывание, и наоборот .


_ А

2) Конъюнкция (логическое умножение, соответствует союзу И). Обозначается Ù, × , & , математическим знаком умножения или опуская его.

Например: С = «Солнце светит и нет дождя».

Обозначим А = «Солнце светит», В= «нет дождя».

Тогда высказывание С можно записать: А Ù В (или А&В, А×В, АВ).

Таблица истинности:
А В А&В (АВ)

3) Дизъюнкция (логическое сложение, ИЛИ), имеет два различных значения. Следует различать исключающее «или» и неисключающее «или».

В русском языке союз «или» используется в двояком смысле.

Например, в предложении «Обычно в 8 вечера я смотрю теле­визор или пью чай» союз «или» взят в неисключающем (объедини­тельном) смысле, так как вы можете только смотреть телевизор или только пить чай, но вы можете также пить чай и смотреть телевизор одновременно, потому что мама у вас нестрогая. Такая операция называетсянестрогой дизъюнкцией или просто дизъюнкцией. (Если бы мама была строгая, то она разрешила бы или только смотреть телевизор, или только пить чай, но не совмещать прием пищи с просмотром телепередач.)

В высказывании «Данный глагол I или II спряжения» союз «или» используется в исключающем (разделительном) смысле.Такаяоперация называетсястрогой дизъюнкцией.

Примеры строгих и нестрогих дизъюнкций:

а) Операция дизъюнкция (логическое сложение, нестрогая дизъюнкция), соответствует неисключающему ИЛИ, обозначается Ú , +.

Строгая дизъюнкция истинна только тогда, когда одно высказывание истинно, а другое ложно.


4) Импликация . Выражается словосочетанием «если … то». Импликация А ® В истинна всегда, за исключением случая, когда А истинно, а В ложно . Таблица истинности импликации имеет следующий вид:

А В А®В 1

(Из опыта : Операция импликации (логического следования) является наиболее сложной для учащихся, так как она самая «формально опреде­ленная» и не подкрепляется «здравым смыслом». В процессе ее изучения имеет смысл поговорить о формальном исполнителе и его отличии от неформального .)

Примеры импликаций:

1) Если клятва дана, то она должна выполняться.

2) Если число делится на 9, то оно делится на 3.

В логике допустимо рассматривать и бессмысленные с житейской точки зрения высказывания.

Приведем примеры суждений, которые не только правомерно рассматривать в логике, но и которые к тому же имеют значение «истина»;

1) Если коровы летают, то 2 + 2 = 5.

2) Если я - Наполеон, то у кошки четыре ноги.

Объяснить операцию импликацию можно, например, следующим образом.

Пусть даны высказывания:

А = На улице дождь. В = Асфальт мокрый .

А®В = «Если на улице дождь, то асфальт мокрый.»

Тогда, если идет дождь (А = 1) и асфальт мокрый (В = 1), то это правильно. Но если вам скажут, что на улице идет дождь (А = 1), а асфальт остается сухим (В = 0), то вы посчитаете это ложью. А вот когда дождя на улице нет (А = 0), то асфальт может быть и сухим, и мокрым (например, только что проехала поливальная машина).

5) Операция эквиваленция обозначается знаками «, =, Û. Сложное высказывание А«В
(А эквивалентно В) истинно тогда и только тогда, когда и А и В истинны, или когда и А и В – ложны.

Сводная таблица логических операций

(заполняется учащимися самостоятельно):

Ниже приведена таблица логических операций и их перевода на естественный язык.

Операция Обозначение Перевод на естественный язык
Инверсия (отрицание) Ā, ùА, не А не А; неверно, что А
Конъюнкция (логическое произведение) АВ, АÙВ, А и В, А and В, А´В, А&В, А×В и А, и В; как А, так и В; А вместе с В; А несмотря на В; А, в то время как В
Дизъюнкция простая (логическая сумма, не исключающее ИЛИ) А+В, А Ú В, А или В, А or В А или В
Дизъюнкция строгая (исключающее ИЛИ) А"В, А Å В или А или В либо А, либо В
Импликация А®В, АÞВ Если А, то В; В если А; В необходимо для А; А достаточно для В; А только тогда, когда В; В тогда, когда А; все А есть В
Эквиваленция А«В, АÛВ А равно В; А эквивалентно В; А необходимо и достаточно для В; А тогда и только тогда, когда В

Приоритет выполнения операций : при отсутствии скобок первой всегда выполняется операция отрицания, затем конъюнкция, дизъюнкция, импликация и в последнюю очередь эквиваленция.

Упражнения.

1. Даны два высказывания:

А={Число 5 - простое},

В={Число 4 - нечетное},

Очевидно, что А=1, В=0.

В чем заключаются высказывания:

а) Ā, б) `В, в) АВ, г) А+В д) А®В

Какие из высказываний а) – г) истинны? Составьте таблицы истинности.

2. Найдите значения выражений:


а) (1 + 1) Ú (1 + 0);

б) ((1 + 0) + 1) + 1;

в) (А + 1) + (В + 0);

г) (0 Ù 1) Ù 1;

д) 1 Ù (1 Ù 1) Ù 1;

е) ((1 Ú 0) Ù (1 Ù 1) Ù (0 Ú 1);

ж) ((1 Ù А) Ú (В Ù 0)) Ú 1;

з) ((1 Ù 1) Ú 0) Ù (0 Ú 1);

и) ((0 Ù 0) Ú 0) Ù (1 Ú 1);

к) ((0 × 1) + (1 + 1)) × 1.


3. Переведите на язык алгебры логики высказывания:

1) «Я поеду в Москву, и если встречу там друзей, то мы интересно проведем там время»

2) «Если я поеду в Москву и встречу там друзей, то мы интересно проведем там время»

3) «Неверно, что если дует ветер, то солнце светит только тогда, когда нет дождя».

4) «Если будет солнечная погода, то ребята пойдут в лес, а если будет пасмурно, то пойдут в кино»

5) «Неверно, что если погода пасмурная, то дождь тогда и только тогда, когда нет ветра».

6) «Если урок по информатике будет интересным, то ни Миша, ни Света, ни Вика не будут смотреть в окно»

Решение:

1) М × (В ® И); 2) (М × В) ® И; 3) В ® С ®`Д;

4) (С ® Л) × (`С ® К); 5) П ® (Д « `В); 6) И ® `М ×`С ×`В

1) «Вам никогда не удастся создать мудрецов, если будете убивать в детях шалунов» (Ж.Руссо).

2) «Чтение художественной литературы – неоценимый источник познания жизни и законов ее борьбы».

4) «Мудрость – это способность предвидеть отдаленные последствия совершаемых действий, готовность пожертвовать сиюминутной выгодой ради больших благ в будущем и умение управлять тем, что управляемо, не сокрушаясь из-за того, что неуправляемо» (Ракофф).

6) «Верность друга нужна и в счастье, в беде же она совершенно необходима».

4. Являются ли высказываниями русские народные пословицы и поговорки? Приведите примеры. (Из опыта : Объявляется конкурс «Знаешь ли ты пословицы, которые являются высказываниями». Победителей обычно несколько, поощряются оценками и поощрительными аплодисментами одноклассников )

Самостоятельная работа №1.

(примерные задания в приложении 1, некоторые решения и ответы в приложении 2)

1) Решить логическую задачу табличным способом;

2) Записать сложные высказывания на языке алгебры логики;

3) Найти значение выражения.

Таблицы истинности

Итак, сложное высказывание принимает значение 1 или 0 в зависимости от значений простых высказываний, входящих в него.

Таблицу, показывающую, какие значения принимает сложное высказывания при всех сочетаниях (наборах) значений входящих в него простых высказываний, называют таблицей истинности сложного высказывания.


В `В А`В А`В А`В ® А

Из полученной таблицы видно, что значения формулы А`В ® А совпадают со значениями формулы А. Такие формулы называются равносильными . Для обозначения равносильности используют обычно знак равенства.

Для составления таблицы истинности сложного высказывания, в которое входит более двух переменных, можно воспользоваться следующим алгоритмом:

2. Определить число строк в таблице m= 2 n .

3. Определить количество столбцов в таблице: число переменных плюс число операций.

4. Выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n–разрядных двоичных чисел от 0 до 2 n -1.

5. Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии приоритета операций.

Пример. Построить таблицу истинности для формулы F=A ® B&C

0

Упражнения.

1. Проверьте равносильность следующих формул с помощью таблиц истинности:


1) А (А + В) = А

2) А + АВ = А

3) А ® В = Ā + В


4) А ® В = `А ®`В

5) `А +`В = А В

6) А + В = Ā ×`В


2. Определите значение формулы: F= ((С+В)®В) × (АВ) ®В.

Тема программы: Высказывания и операции над ними.

Цели урока:

1) Обобщить теоретические знания по теме: «Высказывания и операции над ними».

2) Рассмотреть алгоритмы решений заданий теме «Высказывания и операции над ними», решить задачи.

3) Формировать умение прогнозировать собственную деятельность, умение организовать свою деятельность и анализировать ее.

Время выполнения: 1 час.

Теоретические основы

Основным понятием математической логики является понятие «простого высказывания». Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

Примеры высказываний.
1) Москва стоит на Неве.
2) Лондон - столица Англии.
3) Сокол не рыба.
4) Число 6 делится на 2 и на 3.
Высказывания 2), 3), 4) истинны, а высказывание 1) ложно.
Очевидно, предложение «Да здравствует Россия!» не является высказыванием.
Различают два вида высказываний.
Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).
Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если.... то...», «тогда и только тогда», принято называть сложными или составными.
Так, высказывание 3) получается из простого высказывания «Сокол - рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на З», соединенных союзом «и».
Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».
В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.
Элементарные высказывания обозначаются малыми буквами латинского алфавита: х, у, z, ..., а, b, с, ...; истинное значение высказывания цифрой 1, а ложное значение - буквой цифрой 0.
Если высказывание а истинно, то будем писать а = 1 , а если а ложно, то а = 0 .

Логические операции над высказываниями

Отрицание.

Отрицанием высказывания х называется новое высказывание , которое является истинным, если высказывание х ложно, и ложным, если высказывание х истинно.

Отрицание высказывания х обозначается и читается «не х» или «неверно, что х» .

Логические значения высказывания можно описать с помощью таблицы.

Таблицы такого вида принято называть таблицами истинности.
Пусть х высказывание. Так как также является высказыванием, то можно образовать отрицание высказывания , то есть высказывание , которое называется двойным отрицанием высказывания х . Ясно, что логические значения высказываний х и совпадают.

Например, для высказывания «Путин президент России» отрицанием будет высказывание «Путин не президент России», а двойным отрицанием будет высказывание «Неверно, что Путин не президент России».

Конъюнкция.

Конъюнкцией (логическим умножением) двух высказываний х и у называется новое высказывание, которое считается истинным, если оба высказывания х и у истинны, и ложным, если хотя бы одно из них ложно.
Конъюнкция высказываний х и у обозначается символом х&у ( , ху) , читается «х и у» . Высказывания х и у называются членами конъюнкции.
Логические значения конъюнкции описываются следующей таблицей истинности:

Например, для высказываний «6 делится на 2», «6 делится на 3» их конъюнкцией будет высказывание «6 делится на 2 и 6 делится на 3», которое, очевидно, истинно.

Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.

Дизъюнкция

Дизъюнкцией (логическим сложением) двух высказываний х и у называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний х, у истинно, и ложным, если они оба ложны. Дизъюнкция высказываний х, у обозначается символом «x V у» , читается «х или у» . Высказывания х, у называются членами дизъюнкции.
Логические значения дизъюнкции описываются следующей таблицей истинности:

В повседневной речи союз «или» употребляется в различном смысле: исключающем и не исключающем. В алгебре логики союз «или» всегда употребляется в не исключающем смысле.

Импликация.

Импликацией двух высказываний х и у называется новое высказывание, которое считается ложным, если х истинно, а у - ложно, и истинным во всех остальных случаях.
Импликация высказываний х, у обозначается символом , читается«если х, то у» или «из х следует у». Высказывание х называют условием или посылкой, высказывание у - следствием или заключением, высказывание следованием или импликацией.

Логические значения операции импликации описываются следующей таблицей истинности:

Употребление слов «если.... то...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х, то у» вообще не имеет смысла. Кроме того, строя предложение вида «если х, то у» в обыденной речи, мы всегда подразумеваем, что предложение у вытекает из предложения х . Употребление слов «если..., то...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.
Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «Если х, то у». Если при этом известно, что х истинно и доказана истинность импликации , то мы вправе сделать вывод об истинности заключения у .

Эквивалентность.

Эквивалентностью двух высказываний х и у называется новое высказывание, которое считается истинным, когда оба высказывания х, у либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквивалентность высказываний х, у обозначается символом , читается«для того, чтобы х, необходимо и достаточно, чтобы у» или «х тогда и только тогда, когда у». Высказывания х, у называются членами эквивалентности.
Логические значения операции эквивалентности описываются следующей таблицей истинности:

Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в форме необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, мы зак­лючаем об истинности или ложности второго члена эквивалентности.

Практические задания

1. Установить логическую структуру следующих предложений и записать их на языке логики высказываний:

  • Если металл нагревается, он плавится.
  • Неправда, что философские споры неразрешимы.
  • Деньги - продукт стихийного развития товарных отношений, а не результат договоренности или какого-либо иного сознательного акта.

2. Записать логической формулой следующие высказывания:

а) если на улице дождь, то нужно взять с собой зонт или остаться дома;

Б) если - прямоугольный и стороны - равны, то

3. Проверить истинность высказывания:

а) , если, .

б) , если, .

в) , если, .

4. Проверить истинность высказывания:

а) Чтобы завтра пойти на занятия, я должен встать рано. Если я сегодня пойду в кино, то лягу спать поздно. Если я лягу спать поздно, то встану поздно. Следовательно, либо я не пойду в кино, либо не пойду на занятия.

б) Я пойду либо в кино, либо в бассейн. Если я пойду в кино, то получу эстетическое удовольствие. Если я пойду в бассейн, то получу физическое удовольствие. Следовательно, если я получу физическое удовольствие, то не получу эстетического удовольствия.

5 . На вопрос: «Кто из трех студентов изучал дискретную математику?» получен верный ответ: «Если изучал первый, то изучал и третий, но неверно, что если изучал второй, то изучал и третий». Кто изучал дискретную математику?

6. Определите, кто из четырех студентов сдал экзамен, если известно:

если первый сдал, то и второй сдал;

если второй сдал, то третий сдал или первый не сдал;

если четвертый не сдал, то первый сдал, а третий не сдал;

если четвертый сдал, то и первый сдал.

Контрольные вопросы

1. Какие элементы входят язык логики?

2. Какие способы установления общезначимости формулы логики вы знаете?

Список литературы

Практические занятия № 10-11

Тема программы: Формулы алгебры высказываний.

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

13. Равносильные формулы.

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А , В , С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

Закон противоречия

Закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

14. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно» ;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно» ;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием . Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом . Во всех остальных случаях формула является выполнимой формулой .

15. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х ), В(х , у ), С(х , у , z ).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А(х ), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х ) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х ) и В(х ) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х ) и В(х ) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х ). Обозначим через Т А множество истинности предиката А(х ), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А(х ) и В(х х ) В(х х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х ) В(х ). Если обозначить множество истинности предиката А(х) через Т А, а множество истинности предиката В(х) через Т В и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А(х) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.



Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4.Импликацией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х ) с дополнением к множеству истинности предиката А(х ), т.е.

5. Эквиваленцией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название квантор всеобщности. Обозначается .

Пусть А(х ) – определенный предикат, заданный на множестве Х. Под выражением А(х ) будем понимать высказывание истинное, когда А(х ) истинно для каждого элемента из множества Х, и ложное в противном случае.

Истинность высказываний с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их), достаточно привести контрпример.

16. Определение бинарного отношения между множествами А и В.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

17. Способы задания бинарных отношений.

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R- это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй - другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

18. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю - дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли - нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.

В двух предыдущих лекциях мы определили логические операции — отрицание, конъюнкцию, два вида дизъюнкции, импликацию и эквиваленцию. Рассмотрим некоторые задачи на применение определений логических связок. Это задачи, где требуется выяснить значение истинности одного составного высказывания, если известно значение истинности другого составного высказывания, а также задачи, где требуется определить, существуют ли простые высказывания, если известны истинностные значения некоторых составных высказываний, образованных из этих высказываний.

Определить значение истинности высказывания, используя значения истинности других высказываний

Задача 6.1. Известно, что высказывание $ \displaystyle AB$ ложно, а высказывание $ \displaystyle A \to B $ истинно. Определить значение истинности высказывания $ \displaystyle B \to A’ $, если известно, что его можно однозначно определить, используя эти данные.

Решение. Предположим, что это высказывание ложно:

$ \displaystyle B \to A’=0 $.

Почему мы предположили ложность, а не истинность данной импликации? Причина очень проста: импликация ложна только в одном случае. Если это предположение не будет противоречить условию задачи, то оно верно, так как значение истинности всякого высказывания — это ложь или истина. Согласно определению импликации, она ложна тогда и только тогда, когда посылка истинна, а заключение ложно:

$ \displaystyle B= 1$, $ \displaystyle A’=0 $.

В силу определения отрицания, оно ложно тогда и только тогда, когда само высказывание истинно:

$ \displaystyle A=1 $.

Но в этом случае, учитывая определения импликации и конъюнкции,

$ \displaystyle A \to B=1 $, $ \displaystyle A B=1 $.

Однако по условию задачи последнее высказывание имеет значение истинности «ложь». Получили противоречие. Значит, высказывание $ \displaystyle B \to A’ $ истинно.

Задачу можно решить и другим способом: используя условие, напрямую получить значение истинности импликации. Так как

$ \displaystyle AB=0 $,

то, согласно определению конъюнкции, возможны следующие варианты распределения истинностных значений высказываний $ \displaystyle A $ и $ \displaystyle B $:

1) $ \displaystyle A=B=0 $;

3) $ \displaystyle A=1 $, $ \displaystyle B=0 $.

Поскольку

$ \displaystyle A \to B=1 $,

то, согласно определению импликации, получаем, что значения истинности высказываний $ \displaystyle A $ и $ \displaystyle B $ могут быть такими:

1) $ \displaystyle A=B=0 $;

2) $ \displaystyle A=0 $, $ \displaystyle B=1 $;

3) $ \displaystyle A=B=1 $.

Условия $ \displaystyle A=1 $, $ \displaystyle B=0 $ и $ \displaystyle A=B=1 $ несовместимы, так как любое высказывание либо истинно, либо ложно. Остаются первые два варианта. Проверим их, используя определения импликации и отрицания:

1) $ \displaystyle B \to A’=0 \to 0’=0 \to 1=1 $;

2) $ \displaystyle B \to A’=1 \to 0’=1 \to 1 =1 $.

В обоих случаях высказывание $ \displaystyle B \to A’ $ имеет значение истинности «истина».

Очевидно, что первый способ решения настоящей задачи гораздо короче, чем второй.

Выяснить, достаточно ли данных, чтобы определить значение истинности высказывания

Задача 6.2. Пусть высказывание $ \displaystyle A \to B $ ложно. Достаточно ли этого, чтобы определить значение истинности высказывания $ \displaystyle (B \to (A \to C)) \vee (B’ \to C) $? Если достаточно, то указать это значение. Если не достаточно, то показать на примерах, что возможны оба истинностных значения.

Решение. Поскольку

$ \displaystyle A \to B=0 $,

то, согласно определению импликации,

$ \displaystyle A=1$, $ \displaystyle B=0 $.

Значит, импликация $ \displaystyle B \to (A \to C) $ истинна, так как её посылка ложна (какими бы ни были значения истинности высказываний $ \displaystyle A $ и $ \displaystyle C $). Следовательно, учитывая определение дизъюнкции, высказывание $ \displaystyle (B \to (A \to C)) \vee (B’ \to C) $ имеет значение истинности «истина».

Задача 6.3. Пусть известно, что высказывание $ \displaystyle AB $ истинно. Возможно ли, используя эти данные, определить значение истинности высказывания $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ ? Если возможно, то указать это значение. В противном случае показать на примерах, что высказывание может быть как истинным, так и ложным.

Решение. Поскольку конъюнкция двух высказываний истинна тогда и только тогда, когда оба этих высказывания истинны, то

$ \displaystyle A=B=1 $.

Значит, импликация $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ истинна, если её заключение истинно, и ложна в противном случае (в силу определения данной логической связки). Рассмотрим дизъюнкцию $ \displaystyle (ABC’) \vee (A’BC) $. Известно, что

$ \displaystyle A=B=1 $.

Тогда, согласно определению отрицания $ \displaystyle A’=0 $. Если $ \displaystyle C=0 $, то $ \displaystyle C’=1 $. Следовательно, согласно определению, конъюнкция $ \displaystyle ABC’ $ истинна, а конъюнкция $ \displaystyle A’BC $ ложна. Значит, дизъюнкция $ \displaystyle (ABC’) \vee (A’BC) $ истинна. Если $ \displaystyle C=1 $, то $ \displaystyle C’=0 $. Следовательно, высказывания $ \displaystyle ABC’ $ и $ \displaystyle A’BC $ ложны. Тогда и дизъюнкция $ \displaystyle (ABC’) \vee (A’BC) $ ложна. Итак, высказывание $ \displaystyle (AB) \to ((ABC’) \vee (A’BC))$ имеет значение истинности «ложь» при

$ \displaystyle C=1 $

и «истина» при

$ \displaystyle C=0 $.

Получается, что нельзя однозначно определить значение истинности высказывания, используя условия задачи. Здесь нужно подчеркнуть, что это не означает, что значение истинности вообще нельзя определить. Просто здесь не хватает данных для этого.

Выяснить, существуют ли высказывания с данными значениями истинности

Задача 6.4. Пусть высказывание $ \displaystyle A \vee B’ $ и $ \displaystyle B \to (A \vee C) $ имеет значение истинности «ложь», а высказывание $ \displaystyle C’ \to B’ $ имеет значение истинности «истина». Существуют ли такие высказывания $ \displaystyle A $, $ \displaystyle B$ и $ \displaystyle C $?

Решение. Дизъюнкция двух высказываний, в силу определения, ложна только в одном случае: если ложны оба этих высказывания. Значит,

$ \displaystyle A=B’=0 $.

Следовательно, учитывая определения отрицания,

$ \displaystyle B=1 $.

Рассмотрим импликацию

$ \displaystyle B \to (A \vee C) $.

По условию задачи она ложна. Это возможно тогда и только тогда, когда

$ \displaystyle B=1 $, $ \displaystyle A \vee C =0 $.

Значит, в силу определения дизъюнкции,

$ \displaystyle A=C=0 $.

Следовательно,

$ \displaystyle C’ \to B’=0′ \to 1’=1 \to 0=0 $.

Но, согласно условию задачи, данная импликация истинна. Получили противоречие. Это означает, что не существует высказываний, удовлетворяющим таким условиям.

Логика высказываний , называемая также пропозициональной логикой - раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок сверху - иллюстрация явления, известного как "Парадокс лжеца". При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет "истины" или "лжи" оцениваются только отдельно взятые высказывания . И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений "ложь" или "истина", от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, "флаг" ("flag") и подразумевается, что "флаг поднят", когда значение этой переменной - "истина" и "флаг опущен", когда значение этой переменной - "ложь". В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем "ПользовательЗарегистрирован" (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение "истина" при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение ("истина" или "ложь") имеет переменная "ПользовательЗарегистрирован". В других случах переменной, например, с именем "ДоДняХОсталосьБолееТрёхДней", может быть присвоено значение "Истина" до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на "ложь" и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Логические операции над высказываниями

Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается . Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".

Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".

Например, даны суждения: "собака - животное", "Париж - столица Италии", "3

Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A , B , ..., а их значения, то есть истину и ложь, соответственно И и Л . В обычной речи употребляются связи между высказываниями "и", "или" и другие.

Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания . Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π ² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.

Рассматривая высказывания как величины, принимающие значения И и Л , мы определим далее логические операции над высказываниями , которые позволяют из данных высказываний получать новые - сложные высказывания.

Пусть даны два произвольных высказывания A и B .

1 . Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".

Таблица истинности для конъюнкции:

A B A B
И И И
И Л Л
Л И Л
Л Л Л

2 . Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A B , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B .

Таблица истинности для дизъюнкции:

A B A B
И И И
И Л И
Л И И
Л Л Л

3 . Третья логическая операция над высказываниями A и B , выражаемая в виде A B ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой , B - следствием , а высказывание A B - следованием , называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A , то B ". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B . Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A B ложно. Оно будет истинным тогда и только тогда, когда и A , и B истинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".

Таблица истинности для следования (импликации):

A B A B
И И И
И Л Л
Л И И
Л Л И

4 . Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается ~ A (можно встретить также употребление не символа ~, а символа ¬, а также верхнего надчёркивания над A ). ~ A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A ~ A
Л И
И Л

5 . И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается A B . Полученное таким образом высказывание A B есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B A B B A A B
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если..., то... импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики , которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1.

1) (2 = 2) И (7 = 7) ;

2) Не(15 ;

3) ("Сосна" = "Дуб") ИЛИ ("Вишня" = "Клён") ;

4) Не("Сосна" = "Дуб") ;

5) (Не(15 20) ;

6) ("Глаза даны, чтобы видеть") И ("Под третьим этажом находится второй этаж") ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно "истина", значение выражения во вторых скобках - также истина. Оба высказывания соединены логической операцией "И" (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания - "истина".

2) Значение высказывания в скобках - "ложь". Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания - "истина".

3) Значение высказывания в первых скобках - "ложь", значение высказывания во вторых скобках - также "ложь". Высказывания соединены логической операцией "ИЛИ" и ни одно из высказываний не имеет значения "истина". Поэтому логическое значение всего данного высказывания - "ложь".

4) Значение высказывания в скобках - "ложь". Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания - "истина".

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение "ложь", следовательно, его отрицание будет иметь логическое значение "истина". Высказывание во вторых скобках имеет значение "ложь". Два этих высказывания соединены логической операцией "И", то есть получается "истина И ложь". Следовательно, логическое значение всего данного высказывания - "ложь".

6) Значение высказывания в первых скобках - "истина", значение высказывания во вторых скобках - также "истина". Два этих высказывания соединены логической операцией "И", то есть получается "истина И истина". Следовательно, логическое значение всего данного высказывания - "истина".

7) Значение высказывания в первых скобках - "истина". Значение высказывания во вторых скобках - "ложь". Два этих высказывания соединены логической операцией "ИЛИ", то есть получается "истина ИЛИ ложь". Следовательно, логическое значение всего данного высказывания - "истина".

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) "Пользователь не зарегистрирован";

2) "Сегодня воскресенье и некоторые сотрудники находятся на работе";

3) "Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными".

1) p - одиночное высказывание "Пользователь зарегистрирован", логическая операция: ;

2) p - одиночное высказывание "Сегодня воскресенье", q - "Некоторые сотрудники находятся на работе", логическая операция: ;

3) p - одиночное высказывание "Пользователь зарегистрирован", q - "Отправленные пользователем данные признаны годными", логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) ("В минуте 70 секунд") ИЛИ ("Работающие часы показывают время") ;

2) (28 > 7) И (300/5 = 60) ;

3) ("Телевизор - электрический прибор") И ("Стекло - дерево") ;

4) Не((300 > 100) ИЛИ ("Жажду можно утолить водой")) ;

5) (75 < 81) → (88 = 88) .

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) "Если часы неправильно показывают время, то можно невовремя прийти на занятия";

2) "В зеркале можно увидеть своё отражение и Париж - столица США";

Пример 5. Определите логическое значение выражения

(p q ) ↔ (r s ) ,

p = "278 > 5" ,

q = "Яблоко = Апельсин" ,

p = "0 = 9" ,

s = "Шапка покрывает голову" .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний .

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

p , q , r , ..., p 1 , q 1 , r 1 , ...

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения "истина" и "ложь". Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами .

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

~, ∧, ∨, →, ↔,

а также символы, обеспечивающие возможность однозначного прочтения формул - левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B - формулы логики высказываний, то ~A , (A B ) , (A B ) , (A B ) , (A B ) тоже являются формулами логики высказываний;

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p - одиночное высказывание (атом) "Все рациональные числа являются действительными", q - "Некоторые действительные числа - рациональные числа", r - "некоторые рациональные числа являются действительными". Переведите в форму словесных высказываний следующие формулы логики высказываний:

6) .

1) "нет действительных чисел, которые являются рациональными";

2) "если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными";

3) "если все рациональные числа являются действительными, то некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными";

4) "все действительные числа - рациональные числа и некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными числами";

5) "все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными";

6) "не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными".

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений ("истина" или "ложь") для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно "лжи" тогда, когда из "истины" следует "ложь".

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида ~A , (A B ) , (A B ) , (A B ) , (A B ) . Такой вид имеют сложные формулы.

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций "по старшинству":

↔, →, ∨, ∧, ~ .

В этом списке знак ↔ имеет самую большую область действия, а знак ~ - самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая "порядок старшинства". А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака ~ (при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B ↔ ~ C D A .

Решение. Скобки восстанавливаются пошагово следующим образом:

B ↔ (~ C ) ∨ D A

B ↔ (~ C ) ∨ (D A )

B ↔ ((~ C ) ∨ (D A ))

(B ↔ ((~ C ) ∨ (D A )))

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (B C ) и ~ (A B ) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) - это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно "истина" и "ложь") всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Таким образом, формула логики высказываний, которая принимает значение "истина" при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией .

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение "ложь" при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием .

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из "истины" следует "ложь". Все значения исходного высказывания равны "истине". Следовательно, данная формула логики высказываний является тавтологией.